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1. ABSTRACT 

In the Chesapeake Bay watershed, best management practices (BMPs) are being used by 

urban governments and rural farmers to reduce non-point source pollution of nitrogen, 

phosphorus, and sediment into the Bay to meet the United States Environmental Protection 

Agency’s (USEPA) total maximum daily load (TMDL) standards. Nonpoint source pollution of 

phosphorus and sediment and their transport in overland flow, or surface runoff, on agricultural 

fields were the focus of the study. The soil and water assessment tool (SWAT) was used to 

inform the placement of BMPs on a field-level scale. SWAT utilized regional slope, soil, 

landuse, and weather data from Queen Anne’s county, Maryland to develop a watershed model 

that spatially predicted and ranked areas of overland flow on the 5,323 acre farm property.  

Approximately 7.3% of the model results were randomly selected and groundtruthed during two 

separate precipitation events in January and February 2017.The results indicated that the model 

was not able to predict areas of overland flow above 28.60% accuracy. Identification of 

concentrated non-point source pollution locations has the potential to be achieved through the 

utilization of GIS modeling at increasingly smaller spatial scales, but requires refinement. This 

study analyzed an unconventionally small agricultural watershed and stretched the capabilities of 

the model to predict overland flow at the field-scale. The use of SWAT at smaller spatial scales 

to identify optimal (i.e. those with high overland flow) regions for BMPs is increasingly 

promising, but further research is needed to improve modeling in sub watersheds. 
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2. INTRODUCTION 

The Chesapeake Bay is the largest and one of the most diverse estuaries in the United 

States. The Bay watershed is approximately 64,000 square miles in area and extends nearly two 

hundred miles from its headwaters in Cooperstown, New York to its mouth in southeastern 

Virginia. With its extraordinary size and shallow average depth of 6.7 meters, the Bay is capable 

of supporting a diversity of organisms, which is currently estimated to be greater than 3,600 

unique species (Hoagland, 2005). Unfortunately, Bay water quality has been on a steady 

downward trajectory throughout the last century and has only begun to plateau within the last 

fifteen years (Ernst, 2003). Nutrient pollution has been cited as the largest problem that the Bay 

faces (Chesapeake Bay Foundation [CBF], 2016a; Ripa et.al, 2006). The influxes of nutrients 

and sediment have been connected to declines in various Bay health indicators, such as 

submerged aquatic vegetation (SAV) coverage, bottom dissolved oxygen concentration, and in 

organismal populations such as the eastern oyster, striped bass, and blue crab (Ernst, 2003; 

Kemp et.al., 2005; Rothschild et.al., 1994; Kemp et.al., 1983). As a result of declining water 

quality in the Bay, Chesapeake Bay specific legislation and regulatory bodies were established 

and tasked with reversing these declines by solving the nutrient problem (Hoagland, 2005).  

 

20
th

 Century Efforts: Policy and Legislation 

Motivated by the establishment of national clean water standards by the Clean Water Act 

of 1972 and a 1983 report published by the United States Environmental Protection Agency 

(USEPA) on the problems of the Bay, the Chesapeake Bay Agreement of 1983 was formed to 

establish a collective partnership between the USEPA, the states of Maryland, Virginia, and 

Pennsylvania, the District of Columbia, and the Chesapeake Bay Commission (CBC) (Table 1). 
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Generic goals of improving water quality and collaboration between other organizations were 

set, but no specific goals were developed following the 1983 agreement, which lead to the Bay 

Agreement of 1987. The latter improved upon the existing goals by expanding them and making 

them more specific, for example: “reduce the levels of nitrogen and phosphorus entering the Bay 

by 40 per cent by the year 2000” (Hoagland, 2005). In 2000, a third agreement, Chesapeake 

2000, was established to improve upon the goals of the 1987 Agreement and advance those 

related to water quality and nutrient pollution (Hoagland, 2005). Although each subsequent 

agreement has accomplished, set, and improved previous goals, numerous reevaluations of the 

pollution reduction strategies were conducted, those of which occurred in 1991, 1997, and 2007. 

The 2007 reevaluation summarized the efforts to improve Bay water quality that formally began 

with the Chesapeake Bay Agreement of 1983 had not made “sufficient progress…toward 

improving water quality…[where the Bay was] no longer impaired by nitrogen, phosphorus, and 

sediment pollution” (USEPA, 2010b). The necessity to create a stronger nutrient pollution 

reduction strategy was strengthened by former President Obama’s Executive Order 13508 that 

instructed “the federal government to lead a renewed effort to restore and protect” the Bay and 

the watershed (USEPA, 2010b).  As a result, the Federal Leadership Committee, led by the 

USEPA Administrator and various cabinet secretaries, was created to establish the new nutrient 

management strategy, which was known as the Chesapeake Bay total maximum daily load 

(TMDL, USEPA, 2010b). 

Table 1. Timetable displaying the history of Chesapeake Bay legislation and the 

movement towards improving the health of the estuary. 

Year Action Result 

1972 Clean Water Act Created national clean water standards 

1983 Chesapeake Bay 

Agreement I 

Established a collective partnership between the 

USEPA, MD, VA, PA, DC, and the CBC 
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1987 Chesapeake Bay 

Agreement II 

Set goals to reduce N and P nutrient loading by year 

2000 

1991 Re-evaluation of pollution 

reduction strategy 

Summarized progress and modified goals 

1997 Re-evaluation of pollution 

reduction strategy 

Summarized progress and modified goals 

2000 Chesapeake 2000 Improved 1987 goals for nutrient reduction 

2007 Re-evaluation of pollution 

reduction strategy 

Summarized progress and modified goals 

2009 Executive Order 13508 Set the stage to create the Chesapeake Bay TMDL 

2010-

2025 

Chesapeake Bay TMDL Reduce N, P, sediment pollution; implement all control 

measures (BMPs,WIPs) 

 

21
st
 Century Efforts: The TMDL and WIPs  

The TMDL concept was adapted from Section 303(d) of the Clean Water Act and 

TMDLs are used by the USEPA to improve water quality nationwide.   TMDLs have a long 

history of success in the United States, with more than 40,000 completed in the country (USEPA, 

2016a; USEPA, 2010a). The TMDL is a pollution budget or standard that permits a maximum 

amount of a pollutant, such as nitrogen, from entering the water before major damage will occur 

in a given waterbody. TMDLs are set to achieve specific water quality standards such as 

dissolved oxygen, water clarity, and chlorophyll-a (USEPA, 2016a).  

In the Chesapeake Bay, TMDL standards have been established for nitrogen, phosphorus, 

and sediment (USEPA, 2016a; USEPA, 2010a). TMDLs are a standard that is shared among all 

polluters of nitrogen, phosphorus, or sediment in the Bay, and thus implementation requires a 

substantial amount of collaboration between polluters to collectively minimize pollution through 

various control measures. This is especially true for the Chesapeake Bay as the Chesapeake Bay 

TMDL is far larger than any other that the USEPA has created. As a result, the TMDL structural 

system was modified to be more manageable, where there is a composite TMDL standard for the 

entire watershed that was divided into 92 smaller TMDLs by the tidal segments of the 
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Chesapeake Bay. The tidal segment TMDLs fall into seven jurisdictions, including: Delaware, 

District of Columbia, Maryland, New York, Pennsylvania, Virginia, and West Virginia. These 

TMDLs were set to fulfill individual state water quality standards for the following indicators: 

dissolved oxygen, water clarity, underwater Bay grasses, and chlorophyll-a (USEPA, 2010a). 

These smaller segments enabled states and watersheds to address pollution issues locally through 

their individual state-wide Watershed Implementation Plans (WIPs) (USEPA, 2010a). In 2010, 

the USEPA set the goal that by 2017 at least 60% of the planned for control measures (i.e. the 

best management practices (BMPs)) would be installed, with completion to 100% by 2025 

(USEPA, 2017).  

Within the TMDL framework, all states are required to develop a Watershed 

Implementation Plan (WIP) that details the state’s strategies to reduce their pollutant loads to at 

or below the TMDL for the major river basins that fall within their state boundaries. The WIP 

was also created to provide the USEPA with a way of monitoring the progress of individual 

states on their nutrient reduction efforts. Such strategies, or control measures, include best 

management practices (BMPs). BMPs are strategies to reduce nutrient pollution in all areas of 

pollution production.  The WIPs are split into three separate phases. Phases I and II illustrate the 

proposed actions to be taken that will reduce nitrogen, phosphorus, and sediment loading. These 

two phases were implemented between the years of 2010 and 2012, with goals to be 

accomplished by 2017. Phase III of the WIPs have a goal to fine-tune the actions of the first two 

phases to help meet any TMDLs that have not been met as of 2017. Phase III implementation 

will occur between 2018 and 2025 (USEPA, 2017).  

Since the TMDL is a number that is calculated using a model, it remains to be merely an 

estimate, albeit a good one. It reflects the sum of point and nonpoint source pollution, the 
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projected increase for each of these sources, and an overestimate that serves as a margin of safety 

(Maryland Department of the Environment, 2016). The latter considers that the science behind 

nutrient estimation and geographic information system (GIS) modeling that developed those 

estimates would not be completely precise and creates space for mitigating mistakes. The annual 

watershed limit for nitrogen is 185.9 million pounds, 12.5 million pounds for phosphorus and 

6.45 billion pounds for sediment, which reflect reductions of 25%, 24%, and 20% of nitrogen, 

phosphorus, and sediment, respectively. These numbers were developed using historic and 

current data, including but not limited to: locations of point source pollution, stream flow 

patterns, land use and land cover, and weather data. The data was utilized to develop a variety of 

models that predicted actual flow and transport of the pollution, among other outputs, with GIS 

being heavily utilized in the development of the TMDL (USEPA, 2010a). The TMDL limit 

accounts for both point and non-point source pollution, where sources of either or both are 

required to follow the same standard. Since point sources were easily identified, the main goal of 

the TMDL was to create legislation that worked to successfully address non-point source 

pollution, which cannot be combated in the same way as point source pollution (USEPA, 2010a). 

 

Types of Pollution: Point and Nonpoint Source 

The two main types of pollution are nonpoint and point source. Point source pollution is 

easier to track and manage in some ways because it has a definite source that can be signified by 

an x,y point. More technically, point source pollution is that which has a “discernable, confined 

and discrete conveyance”, such as a pipe or other physical feature that can be marked by a single 

set of x, y coordinates, for which the pollution is transported and discharged into a receiving 

body of water (USEPA, 2016b).  
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A nonpoint source of pollution is that which lacks this concrete and singular point. The 

pollution is also easily transported in water and becomes virtually impossible to trace back to an 

industry, whether that be agriculture or otherwise. In a watershed that is 64,000 square miles in 

area and contains hundreds of thousands of tributaries, there are ample opportunities for 

pollutants to enter the Bay in an infinite number of ways (Chesapeake Bay Program, 2012c). 

Nonpoint source pollution is the threat that has largely been ignored because it is difficult to 

regulate an unknown source and virtually impossible to quantify.  

Both non-point and point source pollution negatively affect the water quality of the Bay 

due to their contributions of nitrogen, phosphorus, sediment, or all of the above. Examples of 

point source pollution within the Bay watershed include wastewater treatment plants, industrial 

discharge facilities, stormwater overflows, and concentrated animal feeding operations (CAFOs). 

Some examples of nonpoint source pollution are: agricultural fields, the atmosphere, forested 

areas, streambanks, and wildlife (USEPA, 2010c). Among all pollutant sources in Maryland, 

agriculture is cited as a major nonpoint source contributor of nitrogen, phosphorus and sediment.  

All three pollutants have been understood to cause the most environmental damage in the Bay’s 

main stem, tributaries, and isolated bodies of water throughout the entire watershed (Legge et.al., 

2013, Ganasri & Ramesh, 2015).  

Across all states in the watershed, estimates of nitrogen, phosphorus, and sediment 

contributions by sector (agriculture, forest, stormwater runoff, point source, septic, and nontidal 

deposition) were modeled using the Chesapeake Bay Phase 5.3 Watershed Model. For Maryland, 

agriculture was modeled to contribute 16% of nitrogen, 19% of phosphorus, and 15% of 

sediment for the state. In comparison to the entire watershed, agriculture is estimated to 

contribute 44% of nitrogen and phosphorus and 65% of sediment to the Bay, making it the 
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“largest single [nonpoint] source” of nutrient pollution (USEPA, 2010c). Agricultural lands also 

only occupy 22% of the land in the watershed, which translates to “more than 87,000 farm 

operations and 6.5 million acres of cropland” (USEPA, 2010c). On the Delmarva Peninsula 

alone, 8% of nitrogen, 10% of phosphorus, and 4% of sediment loading is produced on the 

Eastern Shore, which is the sum of the drainage basin area in Maryland, Delaware, and Virginia. 

These pollution percentages are greater than those on the Western shore of the Bay, which is a 

considerably larger area than the Eastern Shore (USEPA, 2010c). Since agriculture is a known 

major contributor of nitrogen, phosphorus, and sediment, it is imperative to initiate measures to 

reduce the pollution to a level at or below the TMDL. In order for BMPs and WIPs to be 

effective and achieve the TMDL pollution reduction goals, it is necessary to also understand the 

nature of nonpoint source pollution and how the pollution is transported from agricultural fields 

to the Chesapeake Bay. 

 

Pollutant Sources and Transport Mechanisms 

Before reaching the Chesapeake Bay waters, the pollutants of sediment, phosphorus, and 

nitrogen must leave the agricultural fields in which they originate. Each pollutant travels via a 

different mechanism, but are primarily moved as a result of precipitation events. Nitrogen 

predominantly moves when precipitation meets the soil and infiltrates into the ground. Nitrogen 

is commonly found in soils as nitrate (NO3), which is soluble in water. As water infiltrates the 

soil layers, the nitrate dissolves into the water and is transported deeper into the underlying soil 

layers. This process is called leaching. If not absorbed by plant root systems or converted to 

nitrogen gas (denitrification), the dissolved nitrate will enter groundwater sources that will 

eventually connect to tributaries of the Bay (Lamb et.al, 2016). As a result, nitrogen does not 
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commonly travel in overland flow because of its high solubility in water and subsequent 

transport downward into the soil layers and groundwater (Lamb et.al, 2016). 

Alternatively, phosphorus and sediment are predominantly transported by overland flow. 

Overland flow is the process where water, from precipitation, travels across the land surface and 

transports sediment and nutrients to the point of lowest elevation on a given surface, which in 

this case is agricultural land (Wainwright et.al, 2000). There are two main types of overland 

flow: infiltration excess and Hortonian (saturation excess) overland flow. They are 

indistinguishable when observing them in the environment, but occur through two distinct chains 

of events (Fetter, 2001).  

Infiltration excess overland flow occurs when the rate of precipitation exceeds the soil’s 

infiltration capacity. Infiltration is the process by which rainfall enters the soil and is partially 

pulled downwards by gravity and the tension, or capillary force, that the water exerts on the 

particles. The infiltration capacity is highest when the soil is dry, but will decrease before 

reaching a relatively constant rate (Fetter, 2001). The decrease in capacity occurs because soil-

moisture content increases, soil particles swell with water, and pore spaces fill with water, which 

all block the capillary passages and inhibit the ability of water to travel through them. The 

capacity eventually plateaus after four to five hours of consistent infiltration. The water that is 

unable to infiltrate the soil layers is termed infiltration excess (Fetter, 2001).  

 Hortonian overland flow occurs when the rate of precipitation exceeds the infiltration 

capacity of the soil. Following that, the depression storage of the soil must also be filled. 

Depression storage is the temporary storage of water on the surface of the land as ice, snow, or in 

puddles in actual land surface depressions. The movement of the water into depression storage is 

overland flow (Fetter, 2001). Depending on the soil’s infiltration capacity, this type of overland 
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flow may only occur during intense storms or when the soil is already saturated or frozen (Fetter, 

2001). In this process, rainfall will pool on the soil surface and then begin to flow down the 

elevation gradient to the lowest point of elevation (Darboux et.al, 2001). The resulting flow of 

water from both types of overland flow is also known as surface runoff, and the terms are used 

interchangeably.  

Overland flow primarily transports sediment and phosphorus, but not nitrogen. In soil, 

phosphorus’ common forms are the orthophosphates H2PO4
-
 and HPO4

2-
. Some of the 

phosphorus in these two forms becomes inaccessible to plants because of the molecule’s 

negative charge, which results in a strong attraction to the positively charged soil particles. A 

negatively charged ion is known an anion, which can be an atom or molecule of a substance. In 

this case, the molecules are soil particles and orthophosphate. The subsequent ability for the soil 

to attract the anions, termed the anion exchange capacity (AEC), allows for strong bonds to be 

formed between the soil particle and orthophosphate molecules. As a result, the orthophosphate 

adsorbs or strongly bonds to the surface of the soil particles and becomes unusable by plants 

(University of Hawaii at Manoa, 2017). During instances of overland flow, the orthophosphate is 

transported in the overland flow as the flow moves the sediment particles that the molecule is 

adsorbed to. The latter is the primary mechanism of phosphorus movement. When phosphorus 

molecules are not adsorbed to soil particles, they are highly soluble in water and can be 

transported in overland flow or leach into the groundwater similar to nitrogen. This movement of 

phosphorus possesses a much lower potential for contributing to serious phosphorus pollution 

than movement with sediment particles (Brady & Weil, 2002). 
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Figure 1. The Hjulström diagram describes the relationship between sediment 

particle size (mm) and flow velocity (mm/s) of wind or water (Pidwimy, 2006).  

The movement of sediment particles, and thus the phosphorus, are dependent on the flow 

velocity of the overland flow and the size of the particle (Figure 1). The three possible 

movements for soil particles are erosion, transport, and deposition. For transport to occur in 

overland flow, the soil particles have a greater chance of movement at slower flow velocities if 

the particles have diameters between 0.01 and 1.0 mm, such as silt or fine grain sand. Clay 

requires higher flow velocities because the particles aggregate and stick together in a process 

called flocculation (Van Rijn, 2007). As a result, the movement and erosion of clay particles 

requires a high flow velocity. Comparatively, silt and sand particles can be moved at lower flow 

velocities because they do not aggregate via flocculation.  

The orthophosphates readily adsorb to clay particles due to their large surface area 

(University of Hawaii at Manoa, 2017). If the overland flow velocity is substantial enough to 
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move the sediment, the particles become entrained, a process by which water flows fast enough 

to incorporate soil particles into the water column, and transported within the water across the 

farm field (Busman et.al, 2016). The velocity required for a soil particle to be entrained is the 

critical entrainment velocity, which differs depending on the size of the particle. As the flow 

velocity of the water reaches below the critical entrainment threshold, which is different for each 

particle size and type, the particles will fall out of solution and be deposited (Figure 1).  

 

Figure 2. The four main types of soil erosion: sheet, rill, gully and stream/channel 

erosion (Fairfax County Government n.d.). 
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When overland flow consistently occurs in the same regions, distinct patterns of soil 

erosion arise. There are four classes of soil erosion: sheet, rill, gully, and channel/streambank 

(Figure 2). Sheet erosion is the least severe and is characterized by the movement of soil in a 

uniform layer. Sheet erosion is identified by the presence of bare areas, water puddling, the 

presence of visible grass/tree roots, and exposed subsoils. Subsoils are present below the organic 

and surface soil layers. Rill erosion is moderate erosion and is recognized by the presence of 

shallow channels of drainage that are less than 30 centimeters in depth and can be generally 

removed through the tilling process. Gully erosion is advanced rill erosion, where drainage 

channels exceed 30 centimeters in depth. Channel/streambank erosion is found on the banks of 

streams and is characterized by exposed tree or plant roots, steep banks, and little to no 

vegetative cover on the banks (“Soil erosion solutions..”, n.d.; Brady & Weil, 2002). All four 

types of erosion lead to significant soil loss on farm fields, which are especially vulnerable if the 

land is overgrazed and bare of vegetation (Brady & Weil, 2002). The most soil erosion comes 

from sheet and rill erosion. Slope is an additional factor that contributes to erosion by increasing 

the velocity of overland flow, which results in more severe soil erosion (Figure 1; Brady & Weil, 

2002). In order to reduce rainfall induced soil erosion on agricultural lands, various best 

management practices (BMPs) can be used to prevent soil loss and remediate soil erosion during 

precipitation events. 

 

BMPs and the Role of GIS 

The estimates of BMP effectiveness are difficult to assess due to the high costs associated 

with continuous monitoring pre- and post-installation to determine effectiveness in nutrient 

management. To combat this, a growing number of researchers are decreasing their area of study 
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to the watershed and sub-watershed (subbasin) scale to evaluate the effectiveness of multiple 

BMP types (Fisher et.al 2010; Lizotte et al 2014). These and more studies are also monitoring 

nutrient movement in surface and groundwater that have an associated BMP to assess its 

efficiency in nutrient retention over time frames that exceed 10 years (Hoffman et.al, 2009; 

Fisher et.al, 2010; Kroger et.al, 2012; Lizotte et.al, 2014). Additionally, studies are seeking to 

utilize models to identify the optimal locations for BMPs and provide cost-benefit optimization 

analyses (Meals et.al, 2012; Shen, Chen & Zu, 2013; Zou et.al, 2015; Jang et.al, 2015). Within 

the agricultural industry alone, there are a multitude of BMPs that are being utilized to meet 

TMDL standards. Some examples of erosion and sediment control BMPs to install on 

conventionally farmed agricultural land include: conservation tillage, land retirement, riparian 

grass and forest buffers, and stream protection with fencing and off-stream watering for animals 

(Maryland Department of Agriculture, 2012). In order to evaluate the ability of these BMPs to 

reduce pollutants and improve water quality, GIS can be used as a less expensive means of 

analysis that can eliminate the need for continuous monitoring.  

The process of discerning how, when, where, and why the Bay has declined through the 

last century is a task that has been aided by the use of remote sensing satellite technology and 

GIS. Previous applications of these technologies have been used on the large scale to assess 

long-term changes, such as tracking the rate of agricultural expansion across the surface of the 

Earth, assessing seasonal changes in vegetation growth, and understanding the impact of 

environmental changes on wildlife populations (Berry, 1999). Since the 1970s, satellite 

technology has dramatically increased in resolution and temporality. A satellite with a thirty 

meter pixel resolution used to be considered a high spatial resolution (Rose et al., 2015), but 

there are satellites with capabilities to produce images with less than two meter resolution and 
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low-flying aircraft that carry cameras that capture the landscape in images with inches of 

resolution (DigitalGlobe, 2016). The technology of aircraft and spacecraft is now capable of 

sensing changes more frequently and at a much higher resolution, meaning that tracking 

temporal changes is no longer restricted to a watershed scale, but can also be done accurately on 

a field by field scale. Following these improvements in technology, GIS has also evolved from 

simply characterizing changes to evaluating why they are occurring and assessing management 

strategies that minimize or reverse changes. In essence, GIS has become a powerful tool that 

synthesizes information in a spatial presentation to increase the level of understanding while 

decreasing the time expenditure (Berry, 1999). Technological and reasoning advancements of 

GIS have led to the refinement of analysis techniques, thus allowing for finer-scale analysis, 

especially in agriculture. 

GIS has the capacity to inform the installation, management, and effectiveness of 

conservation practices at a watershed or field scale (e.g., Shen, Chen, & Xu, 2013). Using high 

resolution satellite imagery and an existing GIS model, the ArcGIS extension of the Soil and 

Water Assessment Tool (SWAT), was used in this study to identify areas of overland flow on 

active agricultural land. The tool is widely used within the scientific community and has been 

consistently improved and updated over the past three decades (e.g., Gitau, Gburek & Bishop, 

2008; Tuppad, 2009; Amatya & Jha, 2011; Niraula et.al, 2013). The tool was specifically created 

to assess water and nonpoint source pollution loading and supports the science used to establish, 

implement, and enforce the TMDLs. SWAT is a model fit for basin-scale evaluations that can 

predict impacts of different types of water, soil, and chemical management in watersheds 

dominated by agriculture, but can be modified to address smaller spatial scales (e.g., Gitau, 

Gburek & Bishop, 2008; Shen, Chen & Xu, 2013). The model incorporates a variety of weather 
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based data, such as precipitation, temperature, humidity, and wind speeds, but not all simulations 

of the model require the same inputs, a token of its wide-range of applications (Gassman et.al, 

2007). This study will use the tool to identify areas most vulnerable to erosion at the sub-

watershed level (0.00074 to 17.46 acres; or 0.000003-0.070694 km
2
), with the output of this 

analysis producing a visual of the specific areas vulnerable to overland flow erosion on Chino 

Farms in Chestertown, Maryland. 

By identifying areas where overland flow is either occurring or likely to occur, SWAT 

will be used to inform the current management of the farm by suggesting locations where BMPs 

could be installed to mitigate the greatest amount of overland flow. By using this targeting 

methodology, SWAT directs conservation funding to BMP projects that will have the greatest 

impact towards TMDL achievement. The goal is to ameliorate the most phosphorus and 

sediment transported in the flow efficiently over a variety of spatial and temporal scales 

(Renschler & Lee, 2005). As a result of the efforts made in the last 40 years to reduce nutrient 

inputs to the Chesapeake Bay, there is evidence to support that water quality is improving. 

However, GIS can help to further this trend through finer-scale spatial characterization of data 

than the current Bay model, using modeling to improve management, and improving spatial 

reasoning (Chesapeake Bay Foundation, 2016b). I will test the hypothesis that the locations of 

future agricultural BMPs that mitigate the greatest amount of phosphorus and sediment pollution 

at the source and in transport can be pinpointed in the landscape and predicted within 70% 

accuracy using the SWAT model. 
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3. METHODOLOGY 

Study Area 

Chino Farms is a 5,323 acre agricultural property located in Queen Anne’s County, 

Maryland outside of the town of Chestertown. Approximately 2,109 acres of the land is farmed 

conventionally with pesticides, and nutrients are managed with a nutrient management plan, a 

requirement for all farmers in Maryland, and best management practices (BMP) (Maryland 

Department of Agriculture, 2017). The remaining 3,223 acres is composed of shrub and 

forestland, along with a small section of restored grasslands (~200 acres) in the northern part of 

the farm. All of the land is preserved in conservation easements. 

 

Data Acquisition and Pre-Processing 

ArcGIS software (Environmental Systems Research Institute 2016) and the soil and water 

assessment tool (SWAT) extension version 10.3 were used for methodology and map creation 

(Texas A&M University, 2012). Data required by the model was acquired from a number of 

sources (Table 2). Before running the SWAT model, the data was shrunk to capture the footprint 

of Chino Farms. Extract by Mask (Spatial Analyst) was used to the clip the elevation data to the 

Chino Farms property boundary, which became the Source Digital Elevation Model (DEM). Soil 

data was also clipped to the Chino Farms property boundary layer and to the field boundaries 

layer in ArcMap (USDA & NRCS, 2017). 
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Table 2. Summary of data type, sources, timeframe of data collection, and metadata 

used in this experiment.  

Data Type Source 
Timeframe 

of Data 
Metadata 

LiDAR for Queen Anne's County, 

Maryland 
Maryland iMAP, 2013 2013 

2 feet pixel 

resolution; 

±12.5 cm 

vertical 

accuracy 

Chino Farms Property and Field 

Boundaries 

Washington College 

GIS, 2016 
2012 

  

Land Use and Land Cover, Lower 

48 States 

National Land Cover 

Database; Department 

of the Interior and the 

United States 

Geological Survey, 

2016 

2011 

  

Weather (Precipitation (°C), 

precipitation (mm/day), wind 

speed (m/s), relative humidity 

(fractional/day), and solar 

radiation (MJ/m2)) 

Texas A&M 

University, 2017 

12:00AM 

January 1, 

1979- 

12:00AM 

December 

31, 2013 

Bounding 

coordinates: S 

latitude: 

39.1306, W 

longitude: -

76.0831, N 

latitude: 

39.2663, E 

longitude: -

75.8510 

Soil Type 

United States 

Department of 

Agriculture and Natural 

Resources 

Conservation Service 

2017 

Bounding 

coordinates 

same as 

weather data 
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The SWAT Model 

 

Figure 3. Schematic model of the Soil and Water Assessment Tool and 

accompanying user-defined methodology that described the three main workflows that the 

model required before the simulation was produced. Those workflows were: Watershed 

Delineation (dark blue), HRU Analysis (red), and Weather Data Definition (purple/teal, 

Duy Liem, 2012). Abbreviations legend: light detection and ranging (LiDAR), land use and 
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land cover (LULC), digital elevation model (DEM), hydrologic response units (HRU), soil 

and water assessment tool (SWAT). 

The first section of the model’s workflow began with the watershed delineation of Chino 

Farms, outlined in the leftmost third of Figure 3. The watershed delineation was performed on 

the sum area of active agricultural land, which is 2109.38 acres (8.53 km
2
) of the property’s total 

5,323 acres. This methodology produced a polygon layer of the subbasin
1
 boundaries and outlet 

locations of those subbasins (670 total) within the overall study area. Subbasins are the sub-

watersheds within the agricultural fields, and are delineated using the digital elevation model. 

The outlet points were identified by the model as areas where there would likely be overland 

flow collecting at that point within the subbasin. Each point represented the singular convergence 

point of all overland flow contained within each subbasin, thus this variable represented the most 

likely locations where overland flow has occurred (Merwade & Rajib, 2014). The spatial 

variability present on the farm was incorporated into the model through addition of the soil and 

land use data which was clipped to the farm fields using the Extract by Mask (Spatial Analyst) 

tool. The model produced 670 subbasins, and 670 outlets, one for each subbasin.  

Within the second section (middle section; red) of the model’s workflow, the hydrologic 

response unit (HRU) analysis divided the subbasins into areas that contain unique land use, 

management, or soil attributes that improved the model’s conceptualization of the heterogeneity 

of the subbasins. Therefore, each subbasin was divided into multiple HRUs and the total study 

area was divided into 1,317 HRUs. This improved the overall quality of the SWAT model 

simulation due to the increased resolution and analysis of the variability within each subbasin 

(Texas A&M University, 2012). During the input of the soil data, the NLCD 2001/2006 table 

                                                           
1
 Note: subbasin and watershed were synonymous terminology for the purpose of this study. 
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option was chosen to correlate to the land use dataset, and the ArcSWAT STATSGO and Stmuid 

dropdowns were selected for the soil dataset.  To form a slope layer from the existing elevation 

data, the single slope option was kept as the default (Merwade & Rajib 2014). At the final stage 

of the HRU creation, the thresholds of 20%, 10% and 20% were set for land use, soil and slope at 

the recommendation of Strauch et.al (2014).  

The model was calibrated and run using 34 years of air temperature, precipitation, wind 

speed, relative humidity, and solar radiation data (Table 2; purple section of Figure 3). The 

SWAT model simulation had a warm-up period, where a section of data was used to calibrate the 

model.  This data was excluded from the simulation. The weather data from 1979 through 2007 

was used for this purpose following recommendations from the SWAT user group (SWAT User 

Group, n.d.; Abbaspour, n.d.). The ArcSWAT simulation was run on the 2008-2013 weather data 

and produced a model output for each of the six years of weather data (Merwade & Rajib, 2014). 

The SWAT Error Checker was used to evaluate the model for potential calibration or other 

issues. 

 

Surface Runoff Values per Subbasin 

 A map of average surface runoff for each subbasin was produced for the months of 

January and February. The values for surface runoff in millimeters were averaged for each 

subbasin across the six years of the simulation, 2008 to 2013. Each of the 670 subbasins had one 

value for surface runoff produced per month. This average represents the surface runoff for each 

subbasin across January and February in the six year simulation period (2008-2013). This value 

is the average runoff rate for each subbasin, and the values were divided into three categories 
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that were produced using the quantile method. This method split the data into even thirds 

dependent on the distribution of data values. 

January and February were chosen to correspond to the dates and times available for 

ground-truthing the model output because of optimal hydrological conditions. In the winter 

months, the water table is closest to or at the ground surface and therefore created conditions for 

the highest chance of saturation excess overland flow (Fisher et.al, 2010). The surface runoff 

data was incorporated into a map using ArcGIS.  The map allows exploration of the variability in 

average surface runoff that the 670 subbasins of Chino Farms experience on average during these 

two winter months (Figure 4).  

 

Surface Runoff Ranking Index 

The values for overland flow produced by the model were not intuitive for a landowner to 

interpret; therefore, a ranking index was created (Figure 4). The ranking system was created after 

standardizing the overland flow predictions by area.  The overland flow created in each subbasin 

per unit area (SURQ Area, mm/km
2
) was calculated according to:  

  𝑆𝑈𝑅𝑄 𝐴𝑟𝑒𝑎 = (
𝑆𝑈𝑅𝑄𝐺𝑒𝑛

𝐴𝑟𝑒𝑎𝑆𝑈𝐵𝐵𝐴𝑆𝐼𝑁
)     

 (1) 

where SURQgen (mm) is the total amount of overland flow created in each subbasin and 

AreaSUBBASIN (km
2
) is the area of each individual subbasin.  A value of SURQarea was produced 

for each subbasin and this value was used to calculate the relative percent contribution of that 

subbasin to the total overland flow produced within the entire study area (%SUBBASINrel) 

using: 
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%𝑆𝑈𝐵𝐵𝐴𝑆𝐼𝑁𝑟𝑒𝑙 =
𝑆𝑈𝑅𝑄 𝐴𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑆𝑈𝑅𝑄 𝐴𝑟𝑒𝑎
× 100     

(2) 

where SURQArea is the overland flow in units of mm per km
2
 per month that is produced by each 

subbasin, this value is the average of the January and February overland flow predicted by the 

model. Total SURQ Area is the sum of overland flow produced by all of the subbasins in units of 

mm per km
2
. Multipled by 100, a value of %SUBBASINrel was produced for each subbasin, and 

this value indicates each subbasin’s relative contribution of overland flow in the property’s 

watershed. These values were ordered from lowest to highest percent contribution and were 

evenly divided into four classes named below average, moderate, severe, and extreme.  When the 

study area subbasins were mapped and color coordinated according to the four classes, an easy to 

understand visual demonstration depicting the range of water erosion across the subbasins on 

Chino Farms was produced (Figure 5).  

 

Ground-Truthing the Model 

The model’s accuracy was evaluated by comparing the model output to field based 

observations.  Randomly, 10% of the 670 outlet points were evaluated. Randomization was 

achieved using the RAND function in Excel. The 67 points were pre-loaded onto a Garmin 

GPSMAP 76CSx using the Minnesota DNRGarmin application for ArcGIS 10.2 (Minnesota 

Department of Natural Resources, 2017). Since overland flow can be observed during and after a 

precipitation event, I groundtruthed each point on foot during precipitation events during January 

and February of 2017.  To maximize the chance of overland flow observation, ideal site 

conditions would include total saturation of the soils, which would occur during a heavy and 



Koontz 25 
 

consistent rain after a variable period of time that was dependent on the pre-precipitation soil 

saturation.  

Approximately 49 of 670 outlet sites were surveyed for evidence of overland flow during 

the course of the study. Surveying was conducted during ideal conditions, where rainfall 

occurred during the day and for a minimum period of two hours. These conditions were rare 

during the surveying time period, preventing all 67 sites from being surveyed. Sites were 

surveyed over two days, January 23 and February 12, 2017, and heavy rain was consistent during 

each three and half hour period of surveying. Brief rainless periods of fifteen minutes or less 

occurred once or twice during the surveying period, but surveying continued through those 

periods. Surveying concluded within forty-five minutes after rainfall stopped. Site locations 

varied, but the majority (24) were found in the middle of agricultural fields, 6 were found in 

depressions in farm fields, 2 within depressions in buffer zones, 5 within field ditches, 2 within 

roadside ditches, 6 on agricultural field edges, 2 in grassland fields, and 2 in grassland roadways 

(Table 3). Depressions in farm fields and in buffer zones, defined by areas of vegetation that was 

not in active cultivation, were observed as noticeable slopes in the landscape while I was 

surveying. The distinction of noticeable depressions or slopes at the groundtruthed sites was 

made to better judge an area’s likelihood for overland flow in the absence of overland flow. 
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Table 3. Locations of the 49 surveyed sites. 

Number of Sites Location 

6 Depression, farm field 

2 Depression, buffer zone 

5 Ditch, field 

2 Ditch, roadside 

24 Agricultural field 

6 Agricultural field edge 

2 Grassland, field 

2 Grassland, roadway 

  

Evidence of sheet, rill, gully, and channel/streambank erosion (Figure 2) were noted at 

each outlet point. Overland flow was recorded for each site as present or absent (Fetter, 2001). 

Present was defined as points where water was clearly pooled and/or flowing across the land 

surface. Absent was defined as points where there was no noticeable pooled or flowing water on 

the land surface. Sites with high overland flow potential included those within a depression (two 

types: buffer zone and farm field) or a ditch (two types: farm field and roadside). In these 

locations, I surmised that it was highly probable for overland flow to be present, but that I may 

not have observed it due to the absence of ideal site conditions.  

 Images and videos of the immediate area of each site, within three meters of the exact 

location, were captured in situ. The immediate area of three meters was selected because it 

corresponds to the approximate accuracy of the GPS operating unit (CNET, 2017). 
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4. RESULTS 

A total of 1,317 HRUs, 670 subbasins, and 670 outlets were created by the model 

(Appendix A: Figures 8 and 9; Appendix C: Results Table).   

Table 4. Summary values for 12 of 49 groundtruthed outlets, sorted by smallest to 

largest area (km
2
). 

Ground-

truthed 

Surface 

Runoff 
Subbasin 

Area 

(km
2
) 

Averaged Surface 

Runoff in January 

& February in 

2008 and 2013 

(mm/month) 

(Figure 4) 

Surface 

Runoff 

Rating 

(Figure 

4) 

% Surface 

Runoff 

Standardized 

by Area 

(Figure 5) 

Surface 

Runoff 

Rating 

(Figure 5) 

    61 0.000004 4.37 Low 190,095.75 Extreme 

    140 0.000004 13.10 High 481,729.21 Extreme 

x Yes 103 0.000204 2.22 Low 1,912.02 Severe 

x Yes 200 0.003144 7.95 Medium 381.07 Moderate 

x No 626 0.007285 20.38 High 415.82 Moderate 

x Yes 162 0.008498 1.74 Low 42.75 
Below 

Average 

x Yes 134 0.012945 2.16 Low 29.06 
Below 

Average 

x Yes 149 0.01337 0.83 Low 18.22 
Below 

Average 

x Yes 424 0.014666 8.31 Medium 83.17 
Below 

Average 

x Yes 607 0.018796 2.74 Medium 23.91 
Below 

Average 

x Yes 48 0.019188 7.87 Medium 59.63 
Below 

Average 

x No 572 0.035045 15.53 High 67.26 
Below 

Average 

 

Table 4 shows a representation of the diversity of values for subbasin area (SURQArea) 

average surface runoff (SURQgen), surface runoff rating, % surface runoff standardized by area 

(%𝑆𝑈𝐵𝐵𝐴𝑆𝐼𝑁𝑟𝑒𝑙), and the surface runoff rating. Subbasin area varied considerably from the 

lowest value of 0.000004 to the highest value of 0.039314 km
2
. The average area was 0.0127408 

km
2
. The minimum and maximum average surface runoff value (SURQGen) for January and 
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February were 0.22 and 20.48 mm, respectively. The amount of surface runoff from each 

subbasin (𝑆𝑈𝑅𝑄 𝐴𝑟𝑒𝑎) relative to the average surface runoff for the whole area 

(%𝑆𝑈𝐵𝐵𝐴𝑆𝐼𝑁𝑟𝑒𝑙) ranged from 3.45% to 481,729%. Values over 100% indicate that the runoff 

from that subbasin was greater than the average runoff for the entire area.  A value of 481,729% 

indicates that this subbasin was predicted to be a large contributor of surface runoff in the study 

area.  

Table 5. Summarized outcomes of Figure 4, showing the number of subbasins in each 

surface runoff category. 

Surface Runoff (mm) 
# of 

Subbasins 

Low (0.00-7.97)  223 

Medium (7.98-8.82) 232 

High (8.83-20.48) 215 

  

Average surface runoff values (SURQGen) for each subbasin for the months of January 

and February for 2008-2013 varied from 0.00 to 20.48 mm/ month. These values were divided 

into three categories to aid in visualization and were low (yellow, 0.00 to 7.97 mm/month, 223 

subbasins), medium (orange, 7.98 to 8.82 mm/month, 232 subbasins), and high (red, 8.83 to 

20.48 mm/month, 215 subbasins) (Figure 4, Table 5). The low category was concentrated in the 

northernmost portion of the property in and around the grasslands and agricultural fields. The 

medium category was distributed uniformly around the map without a discernable pattern. The 

high category was also dispersed randomly throughout the farm property (Figure 4).  
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Table 6. Summarized outcomes of Figure 5, showing the number of subbasins in each 

relative surface runoff category. 

Surface Runoff 

Contribution (%) 

# of 

Subbasins 

Below Average (3-100%) 308 

Moderate (101-500%) 287 

Severe (501-1,000%) 22 

Extreme (1,001-500,000%) 53 

 

When the data was standardized by area (Equations 1 and 2), predicted hotspots of 

overland flow emerged (Figure 5). The values were divided into four categories: below average 

(3-100%, 308 subbasins), moderate (101-500%, 287 subbasins), severe (501-1,000%, 22 

subbasins), and extreme (1,001-500,000%, 53 subbasins) (Figure 5, Table 6).  On Figure 4, 

arrow #1 is pointing to one of the subbasins (Table 4) which has a high predicted average surface 

runoff (Figure 4).  When the average surface runoff value (mm/month) is standardized by area 

(km
2
), the overall contribution of surface runoff per km

2
 land area is below average (Figure 5, 

arrow #1). At arrows #2 and #3 (Figures 4 & 5), a similar pattern emerges between the figures, 

which represent what occurred for the majority of the subbasins when standardized by area. A 

general trend revealed clear concentrations of below average and moderate predicted surface 

runoff  (SURQGen) in the northern half of the property, and an increase in the prevalence of the 

severe and extreme rankings in the southern half (Figure 5). 
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Figure 4. Averaged surface runoff values per subbasin (mm/month) for years 2008-2013 

January and February. Values are relative to each subbasin, and higher values indicate 

more surface runoff.  

Main Farm 

German Farm 

Clove Farm 

#1 

#3 

#2 
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Figure 5. Overland flow ranking index for each subbasin showing below average, 

moderate, severe, and extreme surface runoff contributions.  

#1 

#2 

#3 
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Ground-truthing 

 Forty-nine sites were surveyed on January 23 and February 12, 2017. Total rainfall 

accumulations of 3.23 inches and 0.22 inches occurred on January 23 and February 17, 

respectively (Weather Underground, 2017).  Of the 49 surveyed sites (Appendix A: Figures 8 

and 9), the majority were in the below average category (28), but 18, 1, and 2 fit in the moderate, 

severe, and extreme categories, respectively. 8 sites showed overland flow (Figure 6). Of these 8 

sites, two fell within the moderate, severe or extreme categories (eqn. 2, Figure 5). This results in 

a 9.5% prediction. 15 of the 49 sites showed potential for overland flow by being located within 

a depression or ditch. Of these 15 sites, 6 fell within the moderate, severe, or extreme categories 

(eqn. 2, Figure 5). This results in a 28.60% prediction. This data refutes my hypothesis that 

SWAT was able to predict with 70% accuracy the occurrence of overland flow. 
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Figure 6. Sites 162 (top) and 200 (bottom) with overland flow present. Site 162 had 

flowing water that extended across approximately a twenty foot range of ground. 
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5. DISCUSSION 

My results refuted my original hypothesis, where I proposed that the SWAT model could 

identify the locations where future agricultural BMPs would be most effective, i.e. reduce the 

greatest amount of surface runoff. The results also did not support that the SWAT model 

simulation would predict the locations of overland flow in the landscape at 70% accuracy or 

better when model results were compared to the groundtruthing observations. The results of my 

groundtruthing efforts yielded 9.5% accuracy for sites where I observed overland flow, and a 

28.60% accuracy at sites that had the potential for overland flow due to their location within a 

depression or ditch. The random selection of outlets to groundtruth during my field surveying 

included at least one outlet from the average surface runoff categories in Figure 4 (low, medium, 

and high), and the percent surface runoff contribution categories in Figure 5 (below average, 

moderate, severe, and extreme) (Table 4). Additionally, the groundtruthed outlets represented a 

wide range of the subbasin areas. This supports that the assortment of model outputs was well 

represented in my groundtruthing efforts. Although my study did not show that SWAT was able 

to predict locations of high overland flow in an area that is below the average area of study, 

field-scale modeling on coastal plain properties larger than 5,323 acres can be done successfully 

using SWAT (Gitau, Gburek & Bishop, 2008; Amatya & Jha, 2011; Niraula et.al, 2013; Jang 

et.al, 2015).  

From the results, Figure 5 was more important to the focus of this study because it takes 

the area of the subbasin into account when determining overland flow, which figure 4 does not 

do (Equations 1 and 2). Figure 4 demonstrated the total amount (mm) of surface runoff that each 

subbasin experiences; however, the sizes of the watersheds vary considerably (see Table 4).  By 

dividing the total amount of runoff that is exiting each subbasin by the area of that subbasin, a 
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runoff rate (mm m
-2

 month
-1

) is calculated. If these values are divided by the average runoff rate 

for all subbasins, each subbasin’s runoff rate is put into the perspective of the average rate 

(Figure 5).  Values less than 100% indicate that these watersheds are responsible for low 

amounts of runoff whereas values greater than 100% indicate that these watersheds are 

responsible for more than the average runoff rate. Figure 5 supports that it is possible to rank 

subbasins by their relative contribution of surface runoff (%SUBBASINRel), but the model did 

not support that these rankings were accurate based on the groundtruthing data. If the model was 

to work how I intended it to, Figure 5 would be utilized to suggest that the areas of severe ad 

extreme surface runoff (red subbasins) would be the regions where new agricultural BMPs 

would be most effective. These two area categories contributed between 500 and 500,000% more 

surface runoff than the average runoff rate of the total study area. The highest value, 481,729% 

(Table 4), was an extreme outlier, and was calculated for a subbasin with one of the smallest 

areas, 0.000004 km
2
. This indicates that the values for the extreme surface runoff category above 

10,000% (15 subbasins) were outliers due to the subbasin’s small areas, which were all less than 

0.000109 km
2
.
 
 

 

Model Capabilities and Limitations  

Some of the issues associated with my model were due to presence of atypical weather 

conditions, limited groundtruthing efforts, and a small study area. During the two sampling days, 

the amount of rainfall was very different. On the 23
rd

 of January, precipitation was recorded at 

2.32 inches, and rainfall on the 17 of February recorded at 0.22 inches. I am postulating that this 

difference in rainfall amount impacted the number of sites that had overland flow, where I 
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observed six sites, out of 29, with overland flow on the 23
rd

 of January, and only 2 sites, out of 

20 that were groundtruthed, had overland flow on the 17
th

 of February. Four of the six sites with 

overland flow that were observed on the 23
rd

 of January were predicted as below average (the 

other two were moderate and extreme), so this comparatively heavy rainfall may have caused 

more overland flow than expected in the below average areas. Additionally, precipitation has 

been lower in the months of January and February this year than compared to last year. In 

January of 2016, the total monthly precipitation was 18.22 inches, and this year’s total was 4.25 

inches, which is 4.2 times less than last year. The same trend occurs in the month of February, 

where the monthly precipitation was 9.96 inches in 2016 and only 1.58 inches in 2017, a 

difference of 6.3 times less than the previous year (Weather Underground, 2017). This supports 

that the weather conditions for this winter were much drier than they are on average, resulting in 

a lower water table and lower soil water storage. This resulted in a lower likelihood that 

saturation excess overland flow would occur this year than in previous years, thus producing 

atypical conditions that likely contributed to fewer incidences of observed overland flow. 

An additional issue with my study setup was the small area of Chino Farms. Within the 

literature studies that use SWAT to aid in BMP and non-point source analysis, researchers 

analyzed watersheds and basins ranging from 1.63 to over 330 square kilometers. Chino Farms is 

a property that is 20 km
2
 in size, but the study area was approximately 8.5 km

2
. In the literature, 

it was much more common to see larger study areas that often spanned multiple states (Gitau, 

Gburek, & Bishop, 2008; Meals et.al, 2012). The majority of studies analyzed watersheds 

between 70 and 350 square kilometers, with fewer researchers focused on watersheds much 

smaller than 70 square kilometers (Amatya & Jha, 2011; Niraula et.al, 2013; Meals et.al, 2012). 

This indicates a potential study limitation based on the size of a watershed, where the area of 
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study needs to be a certain minimum size in order to produce accurate results. There are a 

growing number of papers that are improving BMP evaluation over smaller spatial scales, and 

support that an in-depth BMP analysis may be done within any watershed size, and are becoming 

increasingly more accurate in smaller watersheds (Gitau, Gburek & Bishop, 2008; Shen, Chen & 

Xu, 2013; Amatya et.al, 2011). Some of the watersheds produced during my model were only 

fractions of the size of the smallest watersheds studied in the literature, and my average size was 

0.012 km
2
, which is smaller than the lowest watershed area, 0.08 km

2
, studied by Shen, Chen & 

Xu (2013). Due to the abundance of studies that analyzed larger watersheds, my study falls into 

the below average category due to the small size of the watershed. 

 

Ground-truthing and Verifying the Model  

Beyond using the latitude and longitude points generated with the outlet locations, it was 

difficult to evaluate the accuracy of the model’s numerical estimates. During the surveying 

aspect of the study, the GPS unit that was used possessed an accuracy of ±3 meters. I took this 

into consideration while I was in the field looking for evidence of overland flow by visually 

surveying a 3 meter by 3 meter area using the outlet location as the center point. I did not have 

access to a GPS unit with greater accuracy, and this may have enabled me to more easily confirm 

the presence or absence of overland flow at some of my sites. The outlet sites were surveyed 

over two separate days, which equates to two different sets of weather and soil water content 

conditions, and contributes to site condition variability. The presence of overland flow in some 

of the survey sites was encouraging and validated the model to an extent, but also reflects the 

limitations of the model’s capabilities in this study.  



Koontz 38 
 

To resolve this in future uses of the model, I would expand the time period of my study to 

a six month or yearlong period. This would likely provide more days of precipitation, which was 

a major limitation for my groundtruthing efforts. Two months was a fairly short time period, and 

yielded less than five days of precipitation that occurred during the day and was sustained for 

more than a few hours at a time, which are two requirements for conditions to be optimal for 

surveying. With a larger time frame for the study, an additional advantage would be the 

opportunity to groundtruth more sites and visit the same sites multiple times. The latter would 

enable me to better understand how individual sites vary during diverse rainfall conditions (light 

vs. heavy rainfall, for example), where I would be able to see if a site experiences overland flow 

some days and not others- and why that might occur. An additional strategy to have utilized 

would have been deliberate sampling of the outlet locations within more of the severe and 

extreme categories to see if these areas showed surface runoff (Figure 5).  

It would have been optimal to survey all sites during each day of sampling to confirm that 

each site behaved similarly during two precipitation events; however, this was not feasible. A 

possible alternative would be to work in a research team and have multiple people able to survey 

more sites during a precipitation event. If other researchers were not available, it would 

potentially be feasible to set up a system of cameras that would be set to record photographs and 

video of the sites. This, however, would potentially be expensive. Finally, a further improvement 

that could be made to the groundtruthing would be to understand the impact of pre-existing 

BMPs that were located near the sites by noting where BMPs were installed. In future surveying, 

deliberate selection of some sites within or near BMPs would potentially improve future study 

results. 
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Timing of Model Simulation 

 Even though the average rainfall for the study period was much lower than in the 

previous year, this study was conducted during one of the most optimal times of the year because 

of the position of the water table. In the winter months, the water table is closest to or at the 

ground surface and therefore the highest chance of saturation excess overland flow (Fisher et.al, 

2010). Although the average precipitation for the month of January ranks only 7
th

 highest in the 

year for Chestertown, the probability of overland flow would be higher because the soil is 

saturated by the water found within the water table (Your Weather Service, 2017). At other times 

in the year, the water table is not as close to the surface, decreasing the chance that overland flow 

would occur. This study also alerts farmers and farm managers that their fields are most 

vulnerable to overland flow and sediment erosion during the winter months. In Reddy et.al 

(1977), cover cropping was shown to decrease sediment and phosphorus losses in overland flow. 

This supports the need for cover cropping during these higher vulnerability times of the year 

when it is too cold to grow conventional crops and when the water table is exceptionally high.  

 

Verification of the Model’s Estimates 

 Based upon my current review of the model, the numbers produced for surface runoff in 

my study are not easily compared within the currently available literature. The main reason for 

this is my unique application of the model, where I attempted to accurately calculate the surface 

runoff (SURQGen) for each subbasin. Other studies conducted similar research, but none that 

were directly comparable to my results. The study with the closest intention and purpose was one 

done by Niraula et.al (2013), where they predicted the critical source areas of nitrogen and 
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sediment (i.e. the regions with the highest amount of nitrogen and sediment pollution) while also 

modeling streamflow on a monthly time period. Many other studies have used SWAT, but for 

slightly different applications. 

 For example, Shen, Chen & Xu (2013) calculated sediment, total nitrogen, and total 

phosphorus loading within a similar sized watershed (1100 acres) in China to evaluate BMP 

placement. In another study, Meals et.al (2012) examined an 82,500 acre watershed in Georgia, 

United States, to evaluate the impact of BMPs on nitrogen, phosphorus, and sediment loading 

before and after installation. In a third study, Jang et.al (2015) used SWAT to evaluate rates of 

erosion within the coastal plain region that extends from Mississippi to southern Virginia to 

inform BMP placement in regions of highest erosion. Last, Tuppad et.al (2009) utilized SWAT 

to predict how effective specific BMPs would be at the level of the HRU, sub watershed, and 

watershed level in a study area that exceeds 1,000,000 acres.  

 Although no other study that I found in my research mimicked my own, I am still able to 

draw some conclusions about the reliability of my model’s outputs. The spatial pattern of the 

values (SURQGen in Figure 4 and %SUBBASINRel in Figure 5) appeared to be randomly 

distributed. An obvious pattern would have increased my skepticism of the results. Additionally, 

the model did not classify each subbasin as possessing the same severity, so there was natural 

variation in the data and between subbasins. In Figure 5, the model also clearly identified 

specific subbasins as having a much more substantial contribution to surface runoff than others, 

and did not identify every one as being in the ‘extreme’ category.  
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Evaluation of the Model 

 Within the literature, there are countless studies that utilize SWAT and other watershed 

simulation models; however, there is no comprehensive guide that provides a standardized 

methodology to evaluate a model’s accuracy or performance (Moriasi et.al, 2007). Moriasi et.al 

(2007) conducted an extensive literature review of watershed models, many of them using 

SWAT, and created a tentative guideline of evaluation. A large part of the guide featured 

statistical analyses that can be used to compare watershed simulations of streamflow to actual, 

measured values; however, these analyses are not applicable to my study for two reasons. One, I 

conducted a study of overland flow, and two, my field data did not produce numerical values 

suitable for statistics. As a result, my evaluation of the model defaulted to the generalized section 

of additional considerations in the review by Moriasi et.al. (2007). In this section, Moriasi et.al 

(2007) suggests evaluating the model’s performance based upon the calibration procedure that 

was utilized.  

In my methodology, I calibrated the model with a 29 year warm-up period of weather 

data that spanned from 1979 to 2007. An ideal calibration included years of data that were 

representative of wet, average and dry years, which I confidently covered by using nearly three 

decades of data. Furthermore, an ideal calibration also involves multiple evaluation techniques 

and calibration of all constituents (Moriasi et.al, 2007). This study incorporated one evaluation 

technique, which was observational groundtruthing of outlet points. Additional evaluation 

techniques could be represented in other watershed models. All model constituents, namely the 

digital elevation model, the weather, soil, and landuse data were calibrated to the study area, but 

were not individually evaluated for their accuracy in this study. For example, evapotranspiration 
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values that were calculated using the weather data were not verified for their accuracy, which 

would be conducted in separate study (Moriasi et.al, 2007).  

Based upon the applicable portions of the Moriasi et.al (2007) literature review, the 

model seemed to be calibrated appropriately due to the wide array of data inputs, but lacked 

observational data, i.e. actual and measured overland flow values from the subbasins, that would 

verify the accuracy of the model, its values, and its constituents. Additionally, my methodology 

utilized SWAT in an innovative way, where I sought to extend the model’s applications just 

beyond its current capabilities. The latter further complicates the accuracy evaluation process 

because such a process has either not been developed or is in the process of being developed. 

 

Recommendations 

The overall goal of this research project was to inform the conservation management of 

the Chino Farms property within the Chester River watershed by providing the farm manager, 

landowner, and Washington College with a set of priority locations on the fields where BMPs 

could be installed to most dramatically reduce their surface runoff, and by extension, their 

phosphorus and sediment pollution (Figure 5). This research provides the necessary information 

to the above stakeholders to make informed decisions about current and future management on 

Chino Farms. In addition to informing the management of this farm, the methodology and results 

of this study are applicable to the Chester River watershed, which Chino Farms is part of, across 

the eastern shore of Maryland, and throughout the coastal plain on the east coast of the United 

States. Although the habitat composition of individual farms will differ, SWAT can be used 

effectively to evaluate non-point source pollution and provide precision-based BMP advice 
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based on actual weather, land use, soil data and more. The only limitation to the application of 

this methodology and SWAT is time, a basic knowledge of GIS, and the availability of the 

appropriate computer software. The data and guides on how to use SWAT are freely available to 

the public, and require computational knowledge; however, this can be gained through practice, 

trial, and error. 

 BMPs that would be most effective at reducing surface runoff would be ones that slow 

the flow of water over the landscape and increase the rate of infiltration (Table 6).  Specifically, 

Lowrance et.al (1997) and Lee et.al (2003) observed reduced transport of sediment, phosphorus, 

and nitrogen in riparian buffers that featured multiple species, including switchgrass and woody 

plants. Blanco-Canqui et.al (2004) saw a reduction of 18% of surface runoff, 92% of sediment 

transport, and 71% nutrients with the installation of switchgrass barriers and vegetative filter 

strips. 
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Table 6. Recommended best management practices for reducing surface runoff on 

agricultural fields (Surry Soil and Water Conservation District, n.d.). 

BMP Management Goal(s) Action 

Grass waterways 
Reduce surface runoff and 

increase infiltration 

Plant grass strips within 

depressions on farm 

fields to cover bare soil 

and slow surface runoff 

flow 

Conservation tillage 
Reduce sediment loss in 

surface runoff 

Minimum tilling or no-

till 

Land retirement Reduce surface runoff 

Convert cultivated fields 

to grassland with 

perennial vegetation 

cover 

Riparian forest/ 

grass buffers 

Absorb nutrients (N, P) 

and trap sediment; reduce 

surface runoff 

Plant forest or grassy 

vegetation in 100 feet 

widths on both sides of a 

waterbody 

Stream protection 

and off-stream 

watering 

Reduce sediment erosion 

at the waterbody 

Install fences that 

prevent animals from 

accessing the stream and 

construct alternate water 

sources 

 

The BMPs listed on Table 6 are included within a broader BMP known as conservation 

or farm plans, which serves as a collection of the most effective BMPs for erosion, sediment 

loss, and runoff reduction. These BMPs include conservation tillage, which is a form of active 

management by the farmer to reduce the amount of tillage necessary when seeding, harvesting, 

and managing fields. In a study by Zhang et.al (2007), no-till increased the overall stability of the 

soil and increased the space between soil particles (pore size), which lead to and increase ability 

of the soil to capture rainfall. This translates to a direct increase in infiltration and less overland 

flow, which would increase the surrounding water quality by minimizing sediment movement 

(Zhang et.al, 2007). Land retirement removes marginal and low productivity land from planting 
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rotations, where the land is then planted with perennial vegetation cover, including shrubs, 

grasses, and trees. Riparian forest buffers are strips of woody vegetative cover that are planted on 

both sides of the water source and extending 100 feet on both sides to maximize the retention of 

phosphorus and sediment (Lowrance et.al, 1997; Surry Soil and Water Conservation District, 

n.d.). Riparian grass buffers follow the same design as the forest buffer, but substitute grass and 

non-woody vegetation along the edge of water bodies, such as streams, rivers, and fields where 

they serve as a field border. Both riparian forest and grass buffers are estimated to achieve 

between 45-60% reduction efficiency for phosphorus and sediment mitigation, with the range 

accounting for the geologic history of the farmland. Stream protection with fencing and off 

stream watering is a BMP that relies on fencing to protect the riparian grass or forest buffer from 

livestock, and installs alternate water sources to support the livestock. It is estimated to be up to 

60% and 75% efficient for phosphorus and sediment control, respectively (Pennsylvania 

Department of Environmental Protection, n.d.). 
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6. CONCLUSIONS 

Identification of concentrated non-point source pollution locations has the potential to be 

achieved through the utilization of GIS modeling at increasingly smaller spatial scales. By 

identifying hotspots of overland flow, precision-based BMP placement is possible, but requires 

refinement. In this study, SWAT was used to analyze a relatively small agricultural watershed 

and produced unconventionally minute subbasins. Values for surface runoff were calculated 

using 34 years of weather data, and standardized by area to create a map visual of where non-

point source pollution of phosphorus and sediment were the most concentrated on the property. 

7.3% of these sites were verified with in situ site visits, but these results did not support the 

study’s hypothesis.  In future uses of the model, it would be informative to include data on point 

source pollution to understand the dynamic movements of nitrogen, the last of the three major 

pollutants to the Chesapeake Bay. Additionally, it would be more informative to the model to 

increase the number and frequency of groundtruthing site visits to understand if there is 

individual site variability during diverse rainfall conditions. The use of SWAT at smaller spatial 

scales is increasingly promising, but is an ever-evolving field as GIS technologies improve and 

environmental applications increase. 
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APPENDIX A: AREA OF STUDY AND METHODOLOGY CONCEPTUALIZATION 

 

Figure 7. Location of Chino Farms in Chestertown, Maryland. 

Main Farm 

German Farm 

Clove Farm 
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Figure 8. Main farm of the property with SWAT model produced reaches, outlets, and 

subbasins, which are represented as watersheds on the map. 
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Figure 9. Southern half of the property (part of Main, all of Clove and German Farms) 

with SWAT model produced reaches, outlets, and subbasins, which are represented as 

watersheds on the map. 



Koontz 58 
 

APPENDIX B: ADDITIONAL SWAT  RESULTS 

 

Figure 10. Hydrology model produced from the SWAT Error Checker following the 

simulation.  
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Figure 11. Sediment model produced from the SWAT Error Checker following the 

simulation. 

 

Figure 12.Phosphorus model produced from the SWAT Error Checker following the 

simulation. 

 

APPENDIX C: RESULTS TABLE 

Ground-

truthed 

Surface 

Runoff 
Subbasin 

Area 

(km2) 

Averaged 

Surface 

Runoff in 

January & 

February in 

2008 and 

2013 

(mm/month) 

(Figure 4) 

Surface 

Runoff 

Rating 

(Figure 

4) 

% Surface 

Runoff 

Standardized 

by Area 

(Figure 5) 

Surface 

Runoff 

Rating 

(Figure 

5) 

    1 0.009323 2.04 Low 46.38 
Below 

Average 

    2 0.011689 2.04 Low 36.99 
Below 

Average 

    3 0.002793 0.99 Low 83.63 
Below 

Average 

    4 0.016158 2.04 Low 26.78 
Below 

Average 

x No 5 0.006465 2.03 Low 66.71 
Below 

Average 

    6 0.000401 2.04 Low 1,081.04 Extreme 

    7 0.015804 2.04 Low 27.39 
Below 

Average 

    8 0.007546 2.04 Low 57.24 Below 



Koontz 60 
 

Average 

    9 0.009052 2.04 Low 47.76 
Below 

Average 

    10 0.003476 3.95 Low 197.11 Moderate 

    11 0.000508 8.28 Medium 2,471.11 Extreme 

x No 12 0.016457 2.04 Low 26.25 
Below 

Average 

    13 0.023384 2.03 Low 18.45 
Below 

Average 

x No 14 0.011372 2.04 Low 38.00 
Below 

Average 

    15 0.023849 3.21 Low 24.60 
Below 

Average 

    16 0.007531 3.66 Low 83.72 
Below 

Average 

    17 0.011763 2.04 Low 36.78 
Below 

Average 

    18 0.007601 6.15 Low 122.94 Moderate 

    19 0.000666 2.04 Low 649.63 Severe 

    20 0.000125 2.04 Low 3,469.96 Extreme 

    21 0.000260 2.04 Low 1,668.25 Extreme 

    22 0.000330 3.40 Low 1,814.85 Extreme 

x No 23 0.007549 8.80 Medium 166.60 Moderate 

    24 0.010198 5.27 Low 81.12 
Below 

Average 

    25 0.010550 8.85 High 119.80 Moderate 

    26 0.003044 5.26 Low 271.37 Moderate 

    27 0.008346 8.86 High 151.60 Moderate 

    28 0.007450 2.03 Low 57.81 
Below 

Average 

    29 0.009476 8.85 High 133.40 Moderate 

x No 30 0.009851 3.10 Low 57.11 
Below 

Average 

    31 0.012035 7.81 Low 94.43 
Below 

Average 

    32 0.027743 5.35 Low 31.35 
Below 

Average 

    33 0.016236 8.82 Medium 77.63 
Below 

Average 

    34 0.040465 8.83 High 31.17 
Below 

Average 

    35 0.014192 8.85 High 89.04 
Below 

Average 

    36 0.010344 2.03 Low 41.57 
Below 

Average 

x No 37 0.011650 8.83 High 108.31 Moderate 

    38 0.000272 8.82 Medium 4,633.18 Extreme 

    39 0.016380 8.86 High 77.22 
Below 

Average 

    40 0.004448 2.04 Low 97.38 
Below 

Average 

    41 0.015603 4.95 Low 50.54 
Below 

Average 

    42 0.007672 2.03 Low 56.06 
Below 

Average 

    43 0.015500 3.57 Low 39.68 
Below 

Average 

    44 0.017643 7.58 Low 62.82 
Below 

Average 

x No 45 0.009105 8.87 High 139.18 Moderate 

    46 0.003249 5.20 Low 249.68 Moderate 

    47 0.010760 7.99 Medium 107.65 Moderate 

x Yes 48 0.019188 7.87 Low 59.63 
Below 

Average 
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    49 0.010656 3.86 Low 61.01 
Below 

Average 

    50 0.011711 16.39 High 206.45 Moderate 

    51 0.012823 2.03 Low 33.49 
Below 

Average 

x No 52 0.006646 14.28 High 315.28 Moderate 

    53 0.026000 5.76 Low 33.42 
Below 

Average 

    54 0.041361 15.41 High 54.85 
Below 

Average 

    55 0.009223 10.40 High 162.71 Moderate 

    56 0.018900 20.40 High 160.41 Moderate 

    57 0.008503 0.22 Low 7.44 
Below 

Average 

    58 0.005284 20.35 High 572.21 Severe 

    59 0.007141 13.63 High 279.34 Moderate 

    60 0.003922 15.95 High 599.22 Severe 

    61 0.000004 4.37 Low 190,095.75 Extreme 

    62 0.000077 4.33 Low 9,774.03 Extreme 

    63 0.000419 6.13 Low 2,259.78 Extreme 

    64 0.016504 0.83 Low 14.77 
Below 

Average 

    65 0.020644 2.21 Low 18.65 
Below 

Average 

    66 0.000338 4.33 Low 2,225.59 Extreme 

    67 0.016144 12.61 High 113.90 Moderate 

    68 0.007701 14.13 High 269.11 Moderate 

    69 0.010073 8.81 Medium 124.98 Moderate 

    70 0.008728 18.23 High 305.23 Moderate 

    71 0.013025 8.86 High 97.14 
Below 

Average 

    72 0.002207 8.89 High 575.10 Severe 

    73 0.014693 11.35 High 112.11 Moderate 

    74 0.013967 8.83 High 90.35 
Below 

Average 

    75 0.005445 4.15 Low 110.07 Moderate 

    76 0.028675 20.40 High 105.71 Moderate 

x No 77 0.011390 0.52 Low 13.20 
Below 

Average 

    78 0.009197 6.22 Low 99.48 
Below 

Average 

    79 0.012342 7.84 Low 93.60 
Below 

Average 

    80 0.007290 8.81 Medium 172.55 Moderate 

    81 0.004834 8.80 Medium 260.15 Moderate 

    82 0.007004 20.44 High 433.64 Moderate 

    83 0.005390 16.87 High 462.09 Moderate 

    84 0.013500 20.43 High 224.92 Moderate 

    85 0.016738 16.26 High 143.82 Moderate 

    86 0.009392 6.55 Low 101.60 Moderate 

    87 0.000384 2.49 Low 1,095.10 Extreme 

    88 0.004696 15.55 High 486.83 Moderate 

    89 0.030554 1.96 Low 11.37 
Below 

Average 

    90 0.012630 0.83 Low 19.30 
Below 

Average 

    91 0.008480 5.45 Low 95.16 
Below 

Average 

    92 0.009953 2.32 Low 38.17 
Below 

Average 

    93 0.009363 6.95 Low 108.19 Moderate 
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    94 0.011440 8.80 Medium 109.83 Moderate 

    95 0.014421 8.83 High 87.50 
Below 

Average 

    96 0.011279 2.21 Low 34.13 
Below 

Average 

    97 0.009351 17.70 High 281.57 Moderate 

    98 0.031189 20.41 High 97.17 
Below 

Average 

    99 0.013930 2.94 Low 39.91 
Below 

Average 

x No 100 0.025848 0.83 Low 9.42 
Below 

Average 

    101 0.000772 1.78 Low 385.26 Moderate 

    102 0.010620 8.79 Medium 121.84 Moderate 

x Yes 103 0.000204 2.22 Low 1,912.02 Extreme 

    104 0.006960 5.48 Low 122.81 Moderate 

    105 0.003511 1.64 Low 77.18 
Below 

Average 

    106 0.023775 6.33 Low 42.30 
Below 

Average 

    107 0.011702 8.82 Medium 107.60 Moderate 

    108 0.007395 6.76 Low 139.26 Moderate 

x No 109 0.024996 13.66 High 81.93 
Below 

Average 

    110 0.002906 14.82 High 749.71 Severe 

    111 0.000410 3.85 Low 1,545.62 Extreme 

    112 0.023086 6.93 Low 45.75 
Below 

Average 

x No 113 0.000505 8.23 Medium 2,412.10 Extreme 

    114 0.011266 8.66 Medium 109.57 Moderate 

    115 0.016346 8.80 Medium 76.89 
Below 

Average 

    116 0.000045 8.26 Medium 27,843.64 Extreme 

    117 0.006920 7.15 Low 163.17 Moderate 

    118 0.012760 8.69 Medium 97.13 
Below 

Average 

    119 0.021221 8.74 Medium 59.90 
Below 

Average 

    120 0.009770 8.76 Medium 128.00 Moderate 

    121 0.000180 8.26 Medium 6,957.55 Extreme 

    122 0.014611 5.42 Low 58.98 
Below 

Average 

    123 0.002018 5.71 Low 433.71 Moderate 

    124 0.006945 4.28 Low 99.77 
Below 

Average 

    125 0.004394 3.00 Low 114.81 Moderate 

    126 0.008190 7.97 Low 153.02 Moderate 

    127 0.018545 6.28 Low 51.68 
Below 

Average 

    128 0.029074 20.38 High 104.17 Moderate 

    129 0.007922 3.79 Low 78.22 
Below 

Average 

    130 0.018475 7.93 Low 65.10 
Below 

Average 

    131 0.041065 10.31 High 38.05 
Below 

Average 

    132 0.022680 6.55 Low 45.84 
Below 

Average 

    133 0.010400 8.12 Medium 116.38 Moderate 

x Yes 134 0.012945 2.16 Low 29.06 
Below 

Average 

    135 0.014896 6.58 Low 67.34 
Below 

Average 
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x No 136 0.012113 11.88 High 148.92 Moderate 

    137 0.031221 15.52 High 73.21 
Below 

Average 

    138 0.011568 6.62 Low 87.15 
Below 

Average 

    139 0.010401 5.00 Low 76.21 
Below 

Average 

    140 0.000004 13.10 High 481,729.21 Extreme 

x No 141 0.009611 8.79 Medium 138.16 Moderate 

    142 0.007256 1.80 Low 51.08 
Below 

Average 

    143 0.008725 4.94 Low 89.13 
Below 

Average 

    144 0.000543 2.16 Low 693.06 Severe 

    145 0.016561 6.78 Low 62.47 
Below 

Average 

    146 0.007705 7.91 Low 155.59 Moderate 

    147 0.000077 13.10 High 24,180.31 Extreme 

x No 148 0.010823 4.09 Low 60.46 
Below 

Average 

x Yes 149 0.013370 0.83 Low 18.22 
Below 

Average 

    150 0.027559 14.11 High 77.09 
Below 

Average 

    151 0.001926 2.15 Low 194.28 Moderate 

    152 0.009992 0.83 Low 24.37 
Below 

Average 

    153 0.012197 3.08 Low 42.26 
Below 

Average 

    154 0.000176 8.10 Medium 6,843.96 Extreme 

    155 0.000838 5.42 Low 1,015.41 Extreme 

    156 0.012135 8.10 Medium 99.35 
Below 

Average 

    157 0.013717 16.54 High 179.57 Moderate 

    158 0.014565 8.71 Medium 92.99 
Below 

Average 

    159 0.008240 8.99 High 180.76 Moderate 

    160 0.018511 4.75 Low 41.20 
Below 

Average 

    161 0.000005 6.95 Low 221,803.56 Extreme 

x Yes 162 0.008498 1.74 Low 42.75 
Below 

Average 

    163 0.011888 8.11 Medium 101.47 Moderate 

    164 0.000109 8.09 Medium 11,022.21 Extreme 

x No 165 0.013820 6.10 Low 70.50 
Below 

Average 

    166 0.008445 7.92 Low 142.34 Moderate 

    167 0.007158 1.23 Low 33.36 
Below 

Average 

    168 0.014066 0.83 Low 17.30 
Below 

Average 

x No 169 0.009397 8.13 Medium 128.98 Moderate 

    170 0.022031 6.82 Low 47.85 
Below 

Average 

    171 0.015096 11.53 High 116.77 Moderate 

    172 0.016441 8.89 High 87.19 
Below 

Average 

x No 173 0.055589 5.57 Low 15.90 
Below 

Average 

    174 0.021459 6.56 Low 47.47 
Below 

Average 

    175 0.014371 6.30 Low 66.47 
Below 

Average 

    176 0.017101 6.08 Low 54.87 Below 
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Average 

    177 0.013453 2.78 Low 37.24 
Below 

Average 

    178 0.010187 8.10 Medium 118.31 Moderate 

    179 0.022878 3.68 Low 26.62 
Below 

Average 

    180 0.017860 8.20 Medium 67.67 
Below 

Average 

    181 0.013930 8.31 Medium 84.77 
Below 

Average 

    182 0.000353 8.32 Medium 3,350.05 Extreme 

    183 0.010039 7.93 Low 119.53 Moderate 

    184 0.000172 0.63 Low 917.52 Severe 

    185 0.032388 2.99 Low 14.89 
Below 

Average 

    186 0.000264 0.70 Low 719.72 Severe 

    187 0.016949 8.32 Medium 69.72 
Below 

Average 

    188 0.034579 1.56 Low 9.48 
Below 

Average 

    189 0.004815 8.32 Medium 245.48 Moderate 

    190 0.013538 8.32 Medium 87.29 
Below 

Average 

    191 0.014738 3.67 Low 38.27 
Below 

Average 

    192 0.000038 8.10 Medium 31,700.78 Extreme 

    193 0.024212 9.15 High 55.74 
Below 

Average 

    194 0.010432 5.87 Low 87.85 
Below 

Average 

    195 0.012341 7.06 Low 86.66 
Below 

Average 

    196 0.008282 8.11 Medium 145.89 Moderate 

    197 0.070694 8.11 Medium 17.07 
Below 

Average 

    198 0.002785 7.92 Low 430.96 Moderate 

    199 0.009191 8.09 Medium 130.78 Moderate 

x Yes 200 0.003144 7.95 Low 381.07 Moderate 

    201 0.004067 8.07 Medium 295.72 Moderate 

    202 0.008478 7.91 Low 141.39 Moderate 

    203 0.009633 5.94 Low 95.59 
Below 

Average 

    204 0.008423 4.84 Low 86.62 
Below 

Average 

    205 0.032451 8.09 Medium 37.01 
Below 

Average 

    206 0.008549 8.48 Medium 148.95 Moderate 

    207 0.015865 8.10 Medium 75.93 
Below 

Average 

    208 0.009193 8.14 Medium 135.92 Moderate 

    209 0.021780 8.19 Medium 55.66 
Below 

Average 

    210 0.012856 5.18 Low 60.61 
Below 

Average 

    211 0.043593 2.59 Low 10.49 
Below 

Average 

    212 0.017774 7.97 Low 70.50 
Below 

Average 

    213 0.023626 8.10 Medium 50.97 
Below 

Average 

    214 0.010364 8.07 Medium 116.17 Moderate 

    215 0.021816 8.10 Medium 56.46 
Below 

Average 

    216 0.012624 3.57 Low 48.01 Below 
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Average 

    217 0.009582 3.61 Low 63.73 
Below 

Average 

x No 218 0.013640 8.28 Medium 90.97 
Below 

Average 

    219 0.008995 7.98 Medium 139.45 Moderate 

    220 0.007364 8.09 Medium 163.29 Moderate 

    221 0.011236 7.97 Low 111.54 Moderate 

x No 222 0.020617 4.38 Low 34.56 
Below 

Average 

    223 0.013201 8.30 Medium 94.55 
Below 

Average 

    224 0.001002 8.06 Medium 1,202.73 Extreme 

    225 0.013992 8.31 Medium 90.06 
Below 

Average 

    226 0.016109 1.87 Low 24.83 
Below 

Average 

    227 0.014874 2.31 Low 28.40 
Below 

Average 

    228 0.015619 4.19 Low 43.95 
Below 

Average 

x No 229 0.028673 7.96 Low 42.54 
Below 

Average 

    230 0.010509 7.97 Low 117.35 Moderate 

    231 0.011567 5.37 Low 75.11 
Below 

Average 

    232 0.017319 2.77 Low 30.75 
Below 

Average 

    233 0.000705 0.75 Low 367.35 Moderate 

    234 0.001571 0.46 Low 56.69 
Below 

Average 

    235 0.011523 0.64 Low 16.90 
Below 

Average 

    236 0.011668 3.87 Low 51.46 
Below 

Average 

    237 0.013221 6.13 Low 70.84 
Below 

Average 

    238 0.000363 0.37 Low 196.07 Moderate 

    239 0.010013 0.76 Low 23.85 
Below 

Average 

    240 0.012807 8.08 Medium 94.04 
Below 

Average 

    241 0.000620 0.37 Low 114.74 Moderate 

    242 0.000971 0.37 Low 73.20 
Below 

Average 

    243 0.026573 6.39 Low 37.56 
Below 

Average 

    244 0.000097 0.38 Low 730.59 Severe 

    245 0.008032 6.14 Low 127.02 Moderate 

    246 0.012145 5.65 Low 69.96 
Below 

Average 

    247 0.009894 5.36 Low 82.64 
Below 

Average 

    248 0.000835 0.43 Low 125.83 Moderate 

    249 0.007742 4.33 Low 83.79 
Below 

Average 

    250 0.012113 4.90 Low 62.43 
Below 

Average 

    251 0.014342 0.63 Low 11.60 
Below 

Average 

    252 0.013808 6.09 Low 72.33 
Below 

Average 

    253 0.021102 5.23 Low 39.05 
Below 

Average 

    254 0.012600 5.33 Low 66.57 Below 
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Average 

    255 0.014007 6.32 Low 68.86 
Below 

Average 

    256 0.010650 5.19 Low 77.07 
Below 

Average 

    257 0.019614 0.88 Low 14.93 
Below 

Average 

    258 0.021049 11.54 High 81.28 
Below 

Average 

    259 0.010584 0.83 Low 23.02 
Below 

Average 

    260 0.007221 8.25 Medium 173.22 Moderate 

    261 0.009723 8.84 High 129.81 Moderate 

    262 0.010209 8.88 High 124.22 Moderate 

    263 0.007390 8.21 Medium 168.48 Moderate 

x No 264 0.010086 8.23 Medium 123.76 Moderate 

    265 0.007471 0.83 Low 32.58 
Below 

Average 

    266 0.015612 8.27 Medium 77.83 
Below 

Average 

    267 0.000786 8.41 Medium 1,600.03 Extreme 

    268 0.007857 8.82 Medium 160.39 Moderate 

    269 0.019363 8.22 Medium 64.37 
Below 

Average 

    270 0.032855 8.72 Medium 38.23 
Below 

Average 

    271 0.006818 8.57 Medium 184.27 Moderate 

    272 0.012814 8.26 Medium 97.72 
Below 

Average 

    273 0.017007 12.55 High 110.73 Moderate 

    274 0.021570 8.31 Medium 56.92 
Below 

Average 

    275 0.008814 20.32 High 342.51 Moderate 

    276 0.007133 20.31 High 423.09 Moderate 

    277 0.007078 20.32 High 426.72 Moderate 

    278 0.003784 13.80 High 545.85 Severe 

    279 0.015147 8.85 High 83.41 
Below 

Average 

    280 0.015274 8.23 Medium 81.66 
Below 

Average 

    281 0.020592 7.78 Low 57.77 
Below 

Average 

    282 0.037707 8.03 Medium 32.47 
Below 

Average 

    283 0.000228 10.75 High 7,240.68 Extreme 

    284 0.005181 8.16 Medium 233.18 Moderate 

    285 0.008509 20.34 High 355.19 Moderate 

    286 0.017386 17.58 High 149.59 Moderate 

    287 0.027539 8.82 Medium 45.75 
Below 

Average 

    288 0.014329 8.88 High 88.52 
Below 

Average 

    289 0.008025 8.86 High 157.62 Moderate 

    290 0.007370 20.32 High 409.74 Moderate 

    291 0.011029 12.47 High 167.67 Moderate 

    292 0.007425 11.11 High 227.91 Moderate 

    293 0.021604 8.16 Medium 58.26 
Below 

Average 

    294 0.005666 16.89 High 446.51 Moderate 

    295 0.012899 8.00 Medium 97.49 
Below 

Average 

    296 0.014609 7.99 Medium 85.95 
Below 

Average 
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    297 0.010305 15.58 High 224.93 Moderate 

    298 0.012035 8.41 Medium 104.74 Moderate 

    299 0.014254 8.24 Medium 87.69 
Below 

Average 

x No 300 0.025037 8.12 Medium 48.12 
Below 

Average 

    301 0.024819 8.01 Medium 50.75 
Below 

Average 

    302 0.008527 8.22 Medium 142.26 Moderate 

    303 0.008635 8.29 Medium 153.40 Moderate 

    304 0.006462 8.84 High 195.31 Moderate 

    305 0.008942 8.83 High 141.07 Moderate 

    306 0.020797 8.84 High 60.74 
Below 

Average 

    307 0.023189 8.64 Medium 53.73 
Below 

Average 

    308 0.041735 8.48 Medium 29.54 
Below 

Average 

    309 0.024268 8.85 High 59.21 
Below 

Average 

    310 0.016066 8.83 High 78.51 
Below 

Average 

    311 0.013052 8.84 High 96.77 
Below 

Average 

    312 0.026037 8.72 Medium 53.04 
Below 

Average 

    313 0.020869 8.99 High 67.67 
Below 

Average 

x No 314 0.022012 9.06 High 61.72 
Below 

Average 

    315 0.017361 8.83 High 72.64 
Below 

Average 

    316 0.000021 8.84 High 60,130.85 Extreme 

    317 0.008817 7.61 Low 128.43 Moderate 

    318 0.001826 5.99 Low 526.22 Severe 

    319 0.007874 8.86 High 160.74 Moderate 

    320 0.009009 8.35 Medium 132.71 Moderate 

    321 0.025382 8.84 High 49.72 
Below 

Average 

    322 0.008507 7.16 Low 124.09 Moderate 

    323 0.009690 8.28 Medium 129.68 Moderate 

    324 0.021716 8.83 High 58.08 
Below 

Average 

    325 0.007195 8.28 Medium 174.58 Moderate 

x No 326 0.029085 8.88 High 43.62 
Below 

Average 

    327 0.012064 8.29 Medium 104.17 Moderate 

    328 0.011484 6.65 Low 89.60 
Below 

Average 

    329 0.012080 8.83 High 104.44 Moderate 

    330 0.013183 8.84 High 95.81 
Below 

Average 

x No 331 0.008661 8.28 Medium 142.51 Moderate 

    332 0.022169 3.83 Low 27.89 
Below 

Average 

    333 0.016132 8.82 Medium 78.12 
Below 

Average 

    334 0.013923 8.79 Medium 96.84 
Below 

Average 

    335 0.000131 9.56 High 12,116.24 Extreme 

    336 0.012308 8.26 Medium 101.83 Moderate 

    337 0.011551 8.85 High 109.41 Moderate 

    338 0.010022 8.82 Medium 125.65 Moderate 
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    339 0.020027 8.81 Medium 62.84 
Below 

Average 

    340 0.050370 8.83 High 25.04 
Below 

Average 

    341 0.010279 7.18 Low 105.74 Moderate 

    342 0.002218 6.35 Low 449.82 Moderate 

    343 0.011954 8.84 High 105.68 Moderate 

x No 344 0.001265 8.84 High 998.21 Severe 

    345 0.038454 9.56 High 36.52 
Below 

Average 

x No 346 0.026807 8.85 High 47.17 
Below 

Average 

    347 0.006887 10.45 High 233.54 Moderate 

    348 0.014395 3.81 Low 40.40 
Below 

Average 

    349 0.008974 15.68 High 255.30 Moderate 

    350 0.014101 8.25 Medium 88.76 
Below 

Average 

x No 351 0.011311 8.33 Medium 110.71 Moderate 

    352 0.012613 8.35 Medium 96.84 
Below 

Average 

    353 0.007240 8.26 Medium 172.90 Moderate 

    354 0.030685 10.44 High 52.38 
Below 

Average 

    355 0.006524 6.34 Low 152.76 Moderate 

x No 356 0.007171 8.83 High 175.80 Moderate 

    357 0.011145 10.34 High 142.90 Moderate 

    358 0.013769 4.25 Low 46.62 
Below 

Average 

    359 0.008453 8.26 Medium 148.19 Moderate 

    360 0.032906 9.50 High 44.21 
Below 

Average 

    361 0.018991 6.98 Low 58.56 
Below 

Average 

    362 0.037203 8.82 Medium 33.88 
Below 

Average 

    363 0.017601 8.85 High 71.83 
Below 

Average 

    364 0.009824 8.26 Medium 127.56 Moderate 

    365 0.029167 15.17 High 76.27 
Below 

Average 

    366 0.008123 0.43 Low 11.68 
Below 

Average 

    367 0.011650 8.31 Medium 104.84 Moderate 

    368 0.031212 8.83 High 40.41 
Below 

Average 

    369 0.014305 1.65 Low 23.19 
Below 

Average 

    370 0.008265 8.87 High 153.32 Moderate 

    371 0.015555 4.74 Low 46.11 
Below 

Average 

    372 0.007734 8.33 Medium 158.91 Moderate 

    373 0.008701 5.94 Low 102.00 Moderate 

    374 0.017993 4.47 Low 39.39 
Below 

Average 

    375 0.007235 8.26 Medium 171.41 Moderate 

    376 0.016206 8.82 Medium 77.71 
Below 

Average 

    377 0.016971 8.27 Medium 73.92 
Below 

Average 

    378 0.008179 8.27 Medium 150.37 Moderate 

    379 0.024740 8.81 Medium 50.88 
Below 

Average 

    380 0.011943 8.31 Medium 102.78 Moderate 
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    381 0.010817 8.81 Medium 116.39 Moderate 

    382 0.010140 7.40 Low 112.63 Moderate 

    383 0.014065 15.61 High 162.26 Moderate 

    384 0.011048 8.26 Medium 113.32 Moderate 

x No 385 0.007393 8.82 Medium 170.41 Moderate 

x No 386 0.046685 8.74 Medium 26.71 
Below 

Average 

    387 0.016144 8.29 Medium 75.92 
Below 

Average 

    388 0.007592 8.24 Medium 164.64 Moderate 

    389 0.013401 8.79 Medium 93.74 
Below 

Average 

    390 0.027717 8.80 Medium 45.34 
Below 

Average 

    391 0.017553 8.24 Medium 71.19 
Below 

Average 

    392 0.012166 8.25 Medium 101.08 Moderate 

    393 0.019763 8.63 Medium 62.28 
Below 

Average 

    394 0.005149 8.75 Medium 242.61 Moderate 

x No 395 0.011819 8.71 Medium 105.14 Moderate 

    396 0.007505 8.83 High 167.98 Moderate 

x No 397 0.014546 8.71 Medium 85.37 
Below 

Average 

    398 0.019235 8.68 Medium 64.39 
Below 

Average 

    399 0.003876 8.47 Medium 311.08 Moderate 

    400 0.000020 8.35 Medium 59,327.70 Extreme 

    401 0.007352 8.32 Medium 160.82 Moderate 

    402 0.015873 8.81 Medium 79.28 
Below 

Average 

    403 0.000459 8.36 Medium 2,588.74 Extreme 

    404 0.022728 8.28 Medium 54.00 
Below 

Average 

    405 0.016392 8.84 High 77.06 
Below 

Average 

    406 0.014487 8.83 High 87.01 
Below 

Average 

    407 0.035622 8.81 Medium 35.34 
Below 

Average 

    408 0.007570 8.81 Medium 166.32 Moderate 

    409 0.012028 7.94 Low 96.36 
Below 

Average 

    410 0.007726 8.82 Medium 163.13 Moderate 

    411 0.012307 8.79 Medium 102.07 Moderate 

    412 0.034563 8.83 High 36.47 
Below 

Average 

    413 0.013549 8.60 Medium 91.72 
Below 

Average 

    414 0.009221 8.31 Medium 133.26 Moderate 

    415 0.015088 8.26 Medium 83.06 
Below 

Average 

    416 0.007277 5.67 Low 119.48 Moderate 

x No 417 0.006917 8.30 Medium 179.04 Moderate 

    418 0.010087 8.32 Medium 120.52 Moderate 

    419 0.008440 8.27 Medium 148.61 Moderate 

    420 0.008386 12.35 High 228.70 Moderate 

    421 0.013757 8.27 Medium 89.29 
Below 

Average 

    422 0.017636 8.30 Medium 69.53 
Below 

Average 

    423 0.014400 8.32 Medium 82.78 
Below 

Average 
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x Yes 424 0.014666 8.31 Medium 83.17 
Below 

Average 

    425 0.010541 8.30 Medium 116.09 Moderate 

    426 0.012634 8.25 Medium 99.08 
Below 

Average 

    427 0.007764 8.32 Medium 157.08 Moderate 

    428 0.027402 8.29 Medium 44.95 
Below 

Average 

    429 0.007210 8.36 Medium 166.23 Moderate 

    430 0.008942 8.36 Medium 133.96 Moderate 

    431 0.008562 8.25 Medium 146.16 Moderate 

    432 0.013088 8.25 Medium 95.59 
Below 

Average 

    433 0.010202 8.32 Medium 118.65 Moderate 

    434 0.001791 6.91 Low 614.76 Severe 

    435 0.007378 8.27 Medium 170.07 Moderate 

    436 0.008907 8.22 Medium 145.12 Moderate 

    437 0.008007 8.94 High 170.23 Moderate 

    438 0.008767 8.23 Medium 142.40 Moderate 

    439 0.014025 8.30 Medium 87.63 
Below 

Average 

    440 0.008581 8.25 Medium 145.73 Moderate 

    441 0.020351 8.25 Medium 61.50 
Below 

Average 

    442 0.000568 10.48 High 2,839.00 Extreme 

    443 0.008634 11.15 High 199.54 Moderate 

    444 0.007456 8.21 Medium 167.02 Moderate 

    445 0.000339 13.58 High 6,241.80 Extreme 

    446 0.004799 11.77 High 379.76 Moderate 

    447 0.007768 9.38 High 184.65 Moderate 

    448 0.010737 8.24 Medium 116.32 Moderate 

    449 0.008692 9.24 High 162.52 Moderate 

    450 0.034891 8.32 Medium 34.46 
Below 

Average 

    451 0.008257 8.26 Medium 151.80 Moderate 

    452 0.021308 8.22 Medium 58.51 
Below 

Average 

    453 0.015878 11.53 High 112.38 Moderate 

    454 0.023082 8.29 Medium 53.78 
Below 

Average 

    455 0.035187 8.25 Medium 35.55 
Below 

Average 

    456 0.009116 8.27 Medium 137.50 Moderate 

    457 0.014016 8.27 Medium 89.51 
Below 

Average 

    458 0.012153 10.18 High 128.80 Moderate 

    459 0.034607 8.34 Medium 34.92 
Below 

Average 

    460 0.014861 8.34 Medium 81.17 
Below 

Average 

    461 0.013359 7.31 Low 84.70 
Below 

Average 

    462 0.014293 8.25 Medium 87.47 
Below 

Average 

    463 0.026040 12.41 High 76.16 
Below 

Average 

    464 0.011241 8.29 Medium 107.76 Moderate 

    465 0.012180 8.27 Medium 102.95 Moderate 

    466 0.000372 8.26 Medium 3,365.92 Extreme 

    467 0.007506 8.25 Medium 166.63 Moderate 

    468 0.008087 8.24 Medium 154.45 Moderate 
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    469 0.010366 8.23 Medium 120.32 Moderate 

    470 0.057797 9.13 High 24.12 
Below 

Average 

    471 0.008843 8.25 Medium 141.38 Moderate 

    472 0.004121 8.28 Medium 304.84 Moderate 

    473 0.016278 7.81 Low 73.97 
Below 

Average 

    474 0.013277 8.27 Medium 94.48 
Below 

Average 

    475 0.007110 8.23 Medium 174.10 Moderate 

    476 0.008071 8.28 Medium 155.65 Moderate 

    477 0.001795 8.29 Medium 700.53 Severe 

    478 0.011148 8.24 Medium 112.03 Moderate 

    479 0.008069 8.27 Medium 155.35 Moderate 

    480 0.001345 8.30 Medium 936.23 Severe 

    481 0.000695 8.29 Medium 1,809.99 Extreme 

    482 0.001672 8.29 Medium 751.65 Severe 

    483 0.019957 8.26 Medium 62.74 
Below 

Average 

    484 0.010564 13.67 High 202.02 Moderate 

    485 0.008197 8.27 Medium 153.03 Moderate 

    486 0.018732 8.87 High 76.16 
Below 

Average 

    487 0.016005 8.33 Medium 75.74 
Below 

Average 

    488 0.003553 8.89 High 381.30 Moderate 

    489 0.017885 8.27 Medium 70.11 
Below 

Average 

    490 0.008006 8.29 Medium 153.48 Moderate 

    491 0.009417 8.27 Medium 133.13 Moderate 

    492 0.008682 8.25 Medium 141.91 Moderate 

    493 0.010739 7.48 Low 108.71 Moderate 

    494 0.010148 7.95 Low 120.10 Moderate 

    495 0.012058 8.22 Medium 103.36 Moderate 

    496 0.001396 7.29 Low 822.82 Severe 

    497 0.020833 8.29 Medium 59.24 
Below 

Average 

    498 0.020093 7.77 Low 59.66 
Below 

Average 

    499 0.022700 8.00 Medium 53.97 
Below 

Average 

    500 0.014427 8.10 Medium 85.65 
Below 

Average 

    501 0.011202 8.26 Medium 111.83 Moderate 

    502 0.011696 8.26 Medium 107.03 Moderate 

    503 0.006816 8.24 Medium 183.35 Moderate 

    504 0.010163 8.30 Medium 119.67 Moderate 

    505 0.027717 8.28 Medium 45.94 
Below 

Average 

    506 0.033601 8.28 Medium 36.43 
Below 

Average 

    507 0.007754 8.26 Medium 161.50 Moderate 

    508 0.014133 8.29 Medium 85.91 
Below 

Average 

    509 0.011364 12.19 High 167.74 Moderate 

    510 0.008677 8.27 Medium 144.50 Moderate 

    511 0.006157 10.23 High 262.31 Moderate 

    512 0.000086 9.36 High 16,638.89 Extreme 

    513 0.000061 11.65 High 29,580.98 Extreme 

    514 0.015885 7.50 Low 73.69 
Below 

Average 
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    515 0.011392 8.30 Medium 107.70 Moderate 

    516 0.000024 8.36 Medium 49,545.63 Extreme 

    517 0.000033 13.06 High 61,632.76 Extreme 

    518 0.045365 9.32 High 31.92 
Below 

Average 

    519 0.007720 9.49 High 188.16 Moderate 

    520 0.007376 13.68 High 289.59 Moderate 

    521 0.026412 8.26 Medium 46.81 
Below 

Average 

    522 0.008134 8.31 Medium 148.87 Moderate 

    523 0.026189 8.25 Medium 47.24 
Below 

Average 

    524 0.015980 8.32 Medium 76.51 
Below 

Average 

    525 0.011290 8.31 Medium 106.85 Moderate 

    526 0.007606 6.93 Low 145.15 Moderate 

    527 0.011208 8.23 Medium 111.38 Moderate 

    528 0.008501 8.33 Medium 140.45 Moderate 

    529 0.009454 8.35 Medium 127.81 Moderate 

    530 0.009235 11.94 High 197.39 Moderate 

    531 0.024602 9.75 High 60.40 
Below 

Average 

    532 0.010081 15.13 High 225.99 Moderate 

    533 0.015686 7.51 Low 74.68 
Below 

Average 

    534 0.007775 10.91 High 214.19 Moderate 

    535 0.015669 11.14 High 109.94 Moderate 

    536 0.000165 10.42 High 9,944.55 Extreme 

    537 0.027525 7.87 Low 43.91 
Below 

Average 

    538 0.010627 10.91 High 153.65 Moderate 

    539 0.008407 10.44 High 195.36 Moderate 

    540 0.013939 8.89 High 97.23 
Below 

Average 

    541 0.002100 19.58 High 1,392.11 Extreme 

    542 0.019435 8.35 Medium 62.02 
Below 

Average 

    543 0.022561 15.94 High 106.15 Moderate 

    544 0.011672 14.39 High 179.44 Moderate 

    545 0.008282 13.58 High 239.34 Moderate 

    546 0.012983 5.40 Low 62.26 
Below 

Average 

    547 0.010612 16.87 High 241.25 Moderate 

    548 0.008668 13.00 High 234.68 Moderate 

    549 0.001581 13.03 High 1,209.92 Extreme 

    550 0.009406 12.36 High 199.11 Moderate 

    551 0.013043 7.81 Low 92.24 
Below 

Average 

    552 0.009031 6.29 Low 100.92 
Below 

Average 

    553 0.008068 20.48 High 377.25 Moderate 

    554 0.008293 8.24 Medium 149.44 Moderate 

x No 555 0.008643 8.25 Medium 144.80 Moderate 

    556 0.009083 3.88 Low 66.53 
Below 

Average 

    557 0.012526 11.67 High 137.17 Moderate 

    558 0.013791 8.26 Medium 90.81 
Below 

Average 

    559 0.011396 7.92 Low 101.40 Moderate 

    560 0.044662 10.75 High 37.13 
Below 

Average 



Koontz 73 
 

    561 0.019467 10.37 High 81.96 
Below 

Average 

    562 0.022242 11.10 High 75.79 
Below 

Average 

    563 0.003650 8.24 Medium 342.31 Moderate 

    564 0.011254 0.45 Low 8.44 
Below 

Average 

    565 0.012976 11.76 High 138.34 Moderate 

    566 0.039170 8.24 Medium 31.88 
Below 

Average 

    567 0.012178 8.25 Medium 104.56 Moderate 

    568 0.039314 0.53 Low 3.45 
Below 

Average 

    569 0.007613 0.46 Low 12.39 
Below 

Average 

    570 0.000317 13.59 High 6,681.17 Extreme 

    571 0.031828 14.92 High 70.64 
Below 

Average 

x No 572 0.035045 15.53 High 67.26 
Below 

Average 

    573 0.007518 18.74 High 373.69 Moderate 

    574 0.007508 12.42 High 242.75 Moderate 

x No 575 0.010676 0.65 Low 19.51 
Below 

Average 

    576 0.014811 1.26 Low 14.37 
Below 

Average 

    577 0.002095 17.39 High 1,255.53 Extreme 

    578 0.007974 17.43 High 330.60 Moderate 

    579 0.004213 16.15 High 584.92 Severe 

    580 0.011884 7.56 Low 94.88 
Below 

Average 

    581 0.025190 7.60 Low 44.49 
Below 

Average 

    582 0.008253 17.37 High 318.41 Moderate 

    583 0.012760 0.43 Low 7.45 
Below 

Average 

x No 584 0.008068 8.55 Medium 165.42 Moderate 

    585 0.014103 14.34 High 151.98 Moderate 

    586 0.011965 3.71 Low 55.83 
Below 

Average 

    587 0.026669 14.26 High 80.57 
Below 

Average 

    588 0.007133 11.26 High 245.77 Moderate 

    589 0.028874 12.19 High 65.84 
Below 

Average 

    590 0.031020 20.36 High 97.55 
Below 

Average 

    591 0.022568 18.66 High 124.02 Moderate 

    592 0.010106 16.13 High 243.00 Moderate 

    593 0.013724 14.97 High 162.96 Moderate 

    594 0.007985 13.42 High 251.82 Moderate 

    595 0.022677 4.28 Low 30.15 
Below 

Average 

    596 0.023271 1.41 Low 10.42 
Below 

Average 

    597 0.011166 16.67 High 219.33 Moderate 

    598 0.000214 3.49 Low 2,673.57 Extreme 

    599 0.016746 2.64 Low 26.01 
Below 

Average 

    600 0.001728 3.48 Low 328.59 Moderate 

    601 0.000342 3.47 Low 1,654.32 Extreme 

    602 0.024011 3.56 Low 22.80 
Below 

Average 
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    603 0.009363 11.24 High 180.36 Moderate 

    604 0.008464 14.48 High 258.27 Moderate 

    605 0.008895 16.76 High 279.51 Moderate 

    606 0.001818 3.51 Low 317.07 Moderate 

x Yes 607 0.018796 2.74 Low 23.91 
Below 

Average 

    608 0.001777 5.09 Low 445.60 Moderate 

    609 0.000161 3.49 Low 3,547.94 Extreme 

    610 0.019186 12.31 High 93.34 
Below 

Average 

    611 0.002566 20.46 High 1,184.88 Extreme 

    612 0.009851 4.82 Low 76.23 
Below 

Average 

    613 0.009555 12.05 High 188.03 Moderate 

    614 0.009494 18.21 High 285.57 Moderate 

    615 0.005589 11.71 High 314.62 Moderate 

    616 0.020566 4.87 Low 36.41 
Below 

Average 

    617 0.008440 20.39 High 358.98 Moderate 

    618 0.007345 19.42 High 395.16 Moderate 

    619 0.010555 17.74 High 253.71 Moderate 

    620 0.010110 20.34 High 299.04 Moderate 

    621 0.017412 10.33 High 88.97 
Below 

Average 

    622 0.015388 14.81 High 145.06 Moderate 

    623 0.007113 20.41 High 426.38 Moderate 

    624 0.000003 5.00 Low 261,947.77 Extreme 

    625 0.020908 8.58 Medium 59.39 
Below 

Average 

x No 626 0.007285 20.38 High 415.82 Moderate 

    627 0.002779 16.44 High 899.85 Severe 

    628 0.023376 15.67 High 101.37 Moderate 

    629 0.020877 14.61 High 105.57 Moderate 

    630 0.011404 7.70 Low 112.17 Moderate 

    631 0.000014 13.13 High 146,942.89 Extreme 

    632 0.008490 10.50 High 185.82 Moderate 

    633 0.000647 14.39 High 3,236.79 Extreme 

    634 0.026659 3.95 Low 24.38 
Below 

Average 

    635 0.009741 12.46 High 193.64 Moderate 

    636 0.015390 10.53 High 102.75 Moderate 

    637 0.006620 8.48 Medium 202.07 Moderate 

    638 0.008753 11.70 High 205.77 Moderate 

    639 0.001103 11.67 High 1,609.11 Extreme 

    640 0.001119 11.92 High 1,624.14 Extreme 

x No 641 0.019174 10.77 High 84.41 
Below 

Average 

    642 0.012077 10.90 High 135.03 Moderate 

    643 0.017298 7.75 Low 65.57 
Below 

Average 

    644 0.006980 10.02 High 208.88 Moderate 

    645 0.001944 12.72 High 953.84 Severe 

    646 0.010673 7.63 Low 105.10 Moderate 

    647 0.002417 8.25 Medium 517.86 Severe 

    648 0.028288 9.02 High 48.61 
Below 

Average 

    649 0.014220 11.25 High 116.93 Moderate 

    650 0.007960 7.36 Low 145.24 Moderate 

    651 0.025720 11.65 High 67.29 
Below 

Average 
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    652 0.008348 12.71 High 224.01 Moderate 

    653 0.007961 11.63 High 231.02 Moderate 

    654 0.013697 11.24 High 123.99 Moderate 

    655 0.013548 18.36 High 203.69 Moderate 

    656 0.014980 8.76 Medium 93.04 
Below 

Average 

    657 0.009484 18.32 High 288.36 Moderate 

    658 0.008508 8.50 Medium 154.81 Moderate 

    659 0.012583 10.61 High 124.24 Moderate 

    660 0.019507 11.04 High 84.80 
Below 

Average 

    661 0.008168 11.96 High 213.00 Moderate 

    662 0.015917 9.81 High 92.81 
Below 

Average 

    663 0.016549 12.68 High 112.68 Moderate 

    664 0.015918 8.39 Medium 75.85 
Below 

Average 

    665 0.016602 17.31 High 154.08 Moderate 

    666 0.001792 8.38 Medium 665.12 Severe 

    667 0.012501 9.45 High 110.58 Moderate 

    668 0.014167 14.00 High 144.82 Moderate 

    669 0.006946 8.39 Medium 171.91 Moderate 

    670 0.014737 8.39 Medium 80.96 
Below 

Average 

 


